skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Microscale advection governs microbial growth and oxygen consumption in macroporous aggregates
ABSTRACT Most microbial life on Earth is found in localized microenvironments that collectively exert a crucial role in maintaining ecosystem health and influencing global biogeochemical cycles. In many habitats such as biofilms in aquatic systems, bacterial flocs in activated sludge, periphyton mats, or particles sinking in the ocean, these microenvironments experience sporadic or continuous flow. Depending on their microscale structure, pores and channels through the microenvironments permit localized flow that shifts the relative importance of diffusive and advective mass transport. How this flow alters nutrient supply, facilitates waste removal, drives the emergence of different microbial niches, and impacts the overall function of the microenvironments remains unclear. Here, we quantify how pores through microenvironments that permit flow can elevate nutrient supply to the resident bacterial community using a microfluidic experimental system and gain further insights from coupled population-based and computational fluid dynamics simulations. We find that the microscale structure determines the relative contribution of advection vs diffusion, and even a modest flow through a pore in the range of 10 µm s−1can increase the carrying capacity of a microenvironment by 10%. Recognizing the fundamental role that microbial hotspots play in the Earth system, developing frameworks that predict how their heterogeneous morphology and potential interstitial flows change microbial function and collectively alter global scale fluxes is critical.IMPORTANCEMicrobial life is a key driver of global biogeochemical cycles. Similar to the distribution of humans on Earth, they are often not homogeneously distributed in nature but occur in dense clusters that resemble microbial cities. Within and around these clusters, diffusion is often assumed as the sole mass-transfer process that dictates nutrient supply and waste removal. In many natural and engineered systems such as biofilms in aquatic environments, aggregates in bioremediation, or flocs in wastewater treatment plants, these clusters are exposed to flow that elevates mass transfer, a process that is often overlooked. In this study, we show that advective fluxes can increase the local growth of bacteria in a single microenvironment by up to 50% and shape their metabolism by disrupting localized anoxia or supplying nutrients at different rates. Collectively, advection-enhanced mass transport may thus regulate important biogeochemical transformations in both natural and engineered environments.  more » « less
Award ID(s):
2142998
PAR ID:
10498202
Author(s) / Creator(s):
; ; ; ;
Editor(s):
McMahon, Katherine
Publisher / Repository:
American Society for Microbiology
Date Published:
Journal Name:
mSphere
ISSN:
2379-5042
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bacteria in porous media, such as soils, aquifers, and filters, often form surface-attached communities known as biofilms. Biofilms are affected by fluid flow through the porous medium, for example, for nutrient supply, and they, in turn, affect the flow. A striking example of this interplay is the strong intermittency in flow that can occur when biofilms nearly clog the porous medium. Intermittency manifests itself as the rapid opening and slow closing of individual preferential flow paths (PFPs) through the biofilm–porous medium structure, leading to continual spatiotemporal rearrangement. The drastic changes to the flow and mass transport induced by intermittency can affect the functioning and efficiency of natural and industrial systems. Yet, the mechanistic origin of intermittency remains unexplained. Here, we show that the mechanism driving PFP intermittency is the competition between microbial growth and shear stress. We combined microfluidic experiments quantifying Bacillus subtilis biofilm formation and behavior in synthetic porous media for different pore sizes and flow rates with a mathematical model accounting for flow through the biofilm and biofilm poroelasticity to reveal the underlying mechanisms. We show that the closing of PFPs is driven by microbial growth, controlled by nutrient mass flow. Opposing this, we find that the opening of PFPs is driven by flow-induced shear stress, which increases as a PFP becomes narrower due to microbial growth, causing biofilm compression and rupture. Our results demonstrate that microbial growth and its competition with shear stresses can lead to strong temporal variability in flow and transport conditions in bioclogged porous media. 
    more » « less
  2. Abstract Ocean circulation supplies the surface ocean with the nutrients that fuel global ocean productivity. However, the mechanisms and rates of water and nutrient transport from the deep ocean to the upper ocean are poorly known. Here, we use the nitrogen isotopic composition of nitrate to place observational constraints on nutrient transport from the Southern Ocean surface into the global pycnocline (roughly the upper 1.2 km), as opposed to directly from the deep ocean. We estimate that 62 ± 5% of the pycnocline nitrate and phosphate originate from the Southern Ocean. Mixing, as opposed to advection, accounts for most of the gross nutrient input to the pycnocline. However, in net, mixing carries nutrients away from the pycnocline. Despite the quantitative dominance of mixing in the gross nutrient transport, the nutrient richness of the pycnocline relies on the large-scale advective flow, through which nutrient-rich water is converted to nutrient-poor surface water that eventually flows to the North Atlantic. 
    more » « less
  3. Abstract Cancers exhibit functional and structural diversity in distinct patients. In this mass, normal and malignant cells create tumor microenvironment that is heterogeneous among patients. A residue from primary tumors leaks into the bloodstream as cell clusters and single cells, providing clues about disease progression and therapeutic response. The complexity of these hierarchical microenvironments needs to be elucidated. Although tumors comprise ample cell types, the standard clinical technique is still the histology that is limited to a single marker. Multiplexed imaging technologies open new directions in pathology. Spatially resolved proteomic, genomic, and metabolic profiles of human cancers are now possible at the single-cell level. This perspective discusses spatial bioimaging methods to decipher the cascade of microenvironments in solid and liquid biopsies. A unique synthesis of top-down and bottom-up analysis methods is presented. Spatial multi-omics profiles can be tailored to precision oncology through artificial intelligence. Data-driven patient profiling enables personalized medicine and beyond. 
    more » « less
  4. Bioelectrochemical technologies have attracted significant scientific interest because the effective bacterial electron exchange with external electrodes can provide a sustainable solution that joins environmental remediation and energy recovery. Multispecies electroactive bacterial biofilms are catalysts that will drive the operation of bioelectrochemical devices. Unfortunately, there is a lack of understanding of key mechanisms determining their electron-generating capabilities and syntrophic relations within microbial communities in biofilms. This is because there are no universally standardized models for simple, rapid, reliable, and cost-effective fabrication and characterization of electroactive multispecies biofilms. The heterogeneous and long-term nature of biofilm formation has hampered the development of those models. This work develops novel biofabrication and analysis platforms by creating innovative, paper-based 3-D systems that accurately recapitulate the structure, function, and physiology of living multispecies biofilms. Multiple layers of paper containing bacterial cells were stacked to simulate different layered 3-D biofilm models with defined cellular compositions and microenvironments. Overall bacterial electrogenic capabilities through the biofilm structures were characterized by thoroughly monitoring collective electron flows through different external resistors. Changes in the type of species and order of stacking created biofilm modeling which allowed for the study of their electrogenic performance via variation in electron flow rate output. Furthermore, multi-laminate structures allowed for straightforward de-stacking and layer-by-layer separation for analyses of pH distribution and cellular viability. Our multi-laminate structures provide a new strategy for (i) controlling the biofilm geometry of 3-D bacterial cultures, (ii) monitoring the microbial electoral properties, and (iii) constructing an artificial biofilm layer by layer. 
    more » « less
  5. Abstract Biofilms can increase pathogenic contamination of drinking water, cause biofilm‐related diseases, alter the sediment erosion rate, and degrade contaminants in wastewater. Compared with mature biofilms, biofilms in the early‐stage have been shown to be more susceptible to antimicrobials and easier to remove. Mechanistic understanding of physical factors controlling early‐stage biofilm growth is critical to predict and control biofilm development, yet such understanding is currently incomplete. Here, we reveal the impacts of hydrodynamic conditions and microscale surface roughness on the development of early‐stagePseudomonas putidabiofilm through a combination of microfluidic experiments, numerical simulations, and fluid mechanics theories. We demonstrate that early‐stage biofilm growth is suppressed under high flow conditions and that the local velocity for early‐stageP. putidabiofilms (growth time < 14 h) to develop is about 50 μm/s, which is similar toP. putida's swimming speed. We further illustrate that microscale surface roughness promotes the growth of early‐stage biofilms by increasing the area of the low‐flow region. Furthermore, we show that the critical average shear stress, above which early‐stage biofilms cease to form, is 0.9 Pa for rough surfaces, three times as large as the value for flat or smooth surfaces (0.3 Pa). The important control of flow conditions and microscale surface roughness on early‐stage biofilm development, characterized in this study, will facilitate future predictions and managements of early‐stageP. putidabiofilm development on the surfaces of drinking water pipelines, bioreactors, and sediments in aquatic environments. 
    more » « less