skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Increasing Flood Hazard Posed by Tropical Cyclone Rapid Intensification in a Changing Climate
Abstract Tropical cyclones (TCs) that undergo rapid intensification (RI) before landfall are notoriously difficult to predict and have caused tremendous damage to coastal regions in the United States. Using downscaled synthetic TCs and physics‐based models for storm tide and rain, we investigate the hazards posed by TCs that rapidly intensify before landfall under both historical and future mid‐emissions climate scenarios. In the downscaled synthetic data, the percentage of TCs experiencing RI is estimated to rise across a significant portion of the North Atlantic basin. Notably, future climate warming causes large increases in the probability of RI within 24 hr of landfall. Also, our analysis shows that RI events induce notably higher rainfall hazard levels than non‐RI events with equivalent TC intensities. As a result, RI events dominate increases in 100‐year rainfall and storm tide levels under climate change for most of the US coastline.  more » « less
Award ID(s):
2103754
PAR ID:
10498278
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
5
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Prediction of the rapid intensification (RI) of tropical cyclones (TCs) is crucial for improving disaster preparedness against storm hazards. These events can cause extensive damage to coastal areas if occurring close to landfall. Available models struggle to provide accurate RI estimates due to the complexity of underlying physical mechanisms. This study provides new insights into the prediction of a subset of rapidly intensifying TCs influenced by prolonged ocean warming events known as marine heatwaves (MHWs). MHWs could provide sufficient energy to supercharge TCs. Preconditioning by MHW led to RI of recent destructive TCs, Otis (2023), Doksuri (2023), and Ian (2022), with economic losses exceeding $150 billion. Here, we analyze the TC best track and sea surface temperature data from 1981 to 2023 to identify hotspot regions for compound events, where MHWs and RI of tropical cyclones occur concurrently or in succession. Building upon this, we propose an ensemble machine learning model for RI forecasting based on storm and MHW characteristics. This approach is particularly valuable as RI forecast errors are typically largest in favorable environments, such as those created by MHWs. Our study offers insight into predicting MHW TCs, which have been shown to be stronger TCs with potentially higher destructive power. Here, we show that using MHW predictors instead of the conventional method of using sea surface temperature reduces the false alarm rate by 30%. Overall, our findings contribute to coastal hazard risk awareness amidst unprecedented climate warming causing more frequent MHWs. 
    more » « less
  2. Abstract In this study, we investigate the response of tropical cyclones (TCs) to climate change by using the Princeton environment-dependent probabilistic tropical cyclone (PepC) model and a statistical-deterministic method to downscale TCs using environmental conditions obtained from the Geophysical Fluid Dynamics Laboratory (GFDL) High-resolution Forecast-oriented Low Ocean Resolution (HiFLOR) model, under the Representative Concentration Pathway 4.5 (RCP4.5) emissions scenario for the North Atlantic basin. The downscaled TCs for the historical climate (1986-2005) are compared with those in the mid- (2016-35) and late-twenty-first century (2081-2100). The downscaled TCs are also compared with TCs explicitly simulated in HiFLOR. We show that while significantly more storms are detected in HiFLOR towards the end of the twenty-first century, the statistical-deterministic model projects a moderate increase in TC frequency, and PepC projects almost no increase in TC frequency. The changes in storm frequency in all three datasets are not significant in the mid-twenty-first century. All three project that storms will become more intense and the fraction of major hurricanes and Category 5 storms will significantly increase in the future climates. However, HiFLOR projects the largest increase in intensity while PepC projects the least. The results indicate that HiFLOR’s TC projection is more sensitive to climate change effects and statistical models are less sensitive. Nevertheless, in all three datasets, storm intensification and frequency increase lead to relatively small changes in TC threat as measured by the return level of landfall intensity. 
    more » « less
  3. Abstract Ensemble‐based data assimilation of radar observations across inner‐core regions of tropical cyclones (TCs) in tandem with satellite all‐sky infrared (IR) radiances across the TC domain improves TC track and intensity forecasts. This study further investigates potential enhancements in TC track, intensity, and rainfall forecasts via assimilation of all‐sky microwave (MW) radiances using Hurricane Harvey (2017) as an example. Assimilating Global Precipitation Measurement constellation all‐sky MW radiances in addition to GOES‐16 all‐sky IR radiances reduces the forecast errors in the TC track, rapid intensification (RI), and peak intensity compared to assimilating all‐sky IR radiances alone, including a 24‐hr increase in forecast lead‐time for RI. Assimilating all‐sky MW radiances also improves Harvey's hydrometeor fields, which leads to improved forecasts of rainfall after Harvey's landfall. This study indicates that avenues exist for producing more accurate forecasts for TCs using available yet underutilized data, leading to better warnings of and preparedness for TC‐associated hazards in the future. 
    more » « less
  4. Abstract Tropical cyclones (TCs) are drivers of extreme rainfall and surge, but the current and future TC rainfall–surge joint hazard has not been well quantified. Using a physics-based approach to simulate TC rainfall and storm tides, we show drastic increases in the joint hazard from historical to projected future (SSP5–8.5) conditions. The frequency of joint extreme events (exceeding both hazards’ historical 100-year levels) may increase by 7–36-fold in the southern US and 30–195-fold in the Northeast by 2100. This increase in joint hazard is induced by sea-level rise and TC climatology change; the relative contribution of TC climatology change is higher than that of sea-level rise for 96% of the coast, largely due to rainfall increases. Increasing storm intensity and decreasing translation speed are the main TC change factors that cause higher rainfall and storm tides and up to 25% increase in their dependence. 
    more » « less
  5. Abstract Estimating the magnitude of tropical cyclone (TC) rainfall at different landfalling stages is an important aspect of the TC forecast that directly affects the level of response from emergency managers. In this study, a climatology of the TC rainfall magnitude as a function of the location of the TC centers within distance intervals from the coast and the percentage of the raining area over the land is presented on a global scale. A total of 1834 TCs in the period from 2000 until 2019 are analyzed using satellite information to characterize the precipitation magnitude, volumetric rain, rainfall area, and axial-symmetric properties within the proposed landfalling categories, with an emphasis on the postlandfall stages. We found that TCs experience rainfall maxima in regions adjacent to the coast when more than 50% of their rainfall area is over the water. TC rainfall is also analyzed over the entire TC extent and the portion over land. When the total extent is considered, rainfall intensity, volumetric rain, and rainfall area increase with wind speed intensity. However, once it is quantified over the land only, we found that rainfall intensity exhibits a nearly perfect inversely proportional relation with the increase in TC rainfall area. In addition, when a TC with life maximum intensity of a major hurricane makes landfall as a tropical depression or tropical storm, it usually produces the largest spatial extent and the highest volumetric rain. Significant StatementThis study aims to describe the cycle of tropical cyclone (TC) precipitation magnitude through a new approach that defines the landfall categories as a function of the percentage of the TC precipitating area over the land and ocean, along with the location of the TC centers within distance intervals from the coast. Our central hypothesis is that TC rainfall should exhibit distinct features in the long-term satellite time series for each of the proposed stages. We particularly focused on the overland events due to their effects on human activities, finding that the TCs that at some point of their life cycle reached major hurricane strength and made landfall as a tropical storm or tropical depression produced the highest volumetric rain over the land surface. This research also presents key observational evidence of the relationship between the rain rate, raining area, and volumetric rain for landfalling TCs. 
    more » « less