skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Emplacement of shergottites in the Martian crust inferred from three‐dimensional petrofabric and crystal size distribution analyses
Abstract Shergottites are mafic to ultramafic igneous rocks that represent the majority of known Martian meteorites. They are subdivided into gabbroic, poikilitic, basaltic, and olivine–phyric categories based on differences in mineralogy and textures. Their geologic contexts are unknown, so analyses of crystal sizes and preferred orientations have commonly been used to infer where shergottites solidified. Such environments range from subsurface cumulates to shallow intrusives to extrusive lava flows, which all have contrasting implications for interactions with crustal material, cooling histories, and potential in situ exposure at the surface. In this study, we present a novel three‐dimensional (3‐D) approach to better understand the solidification environments of these samples and improve our knowledge of shergottites' geologic contexts. Shape preferred orientations of most phases and crystal size distributions of late‐forming minerals were measured in 3‐D using X‐ray computed tomography (CT) on eight shergottites representing the gabbroic, poikilitic, basaltic, and olivine–phyric categories. Our analyses show that highly anisotropic, rod‐like pyroxene crystals are strongly foliated in the gabbroic samples but have a weaker foliation and a mild lineation in the basaltic sample, indicating a directional flow component in the latter. Star volume distribution analyses revealed that most phases (maskelynite, pyroxene, olivine, and oxides/sulfides) preserve a foliated texture with variable strengths, and that the phases within individual samples are strongly to moderately aligned with respect to one another. In combination with relative cooling rates during the final stages of crystallization determined from interstitial oxide/sulfide crystal size distribution analyses, these results indicate that the olivine–phyric samples were emplaced as shallow intrusives (e.g., dikes/sills) and that the gabbroic, poikilitic, and basaltic samples were emplaced in deeper subsurface environments.  more » « less
Award ID(s):
2223808
PAR ID:
10498320
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Meteoritics & Planetary Science
Volume:
59
Issue:
7
ISSN:
1086-9379
Format(s):
Medium: X Size: p. 1523-1545
Size(s):
p. 1523-1545
Sponsoring Org:
National Science Foundation
More Like this
  1. Cosmogenic nuclide surface exposure dating and erosion rate measurements in basaltic landscapes rely primarily on measurement of 3He in olivine or pyroxene. However, geochemical investigations using 3He have been impossible in the substantial fraction of basalts that lack separable olivine or pyroxene crystals, or where such crystals were present, but have been chemically weathered. Fine-textured basalts often contain small grains of ilmenite, a weathering-resistant mineral that is a target for cosmogenic 3He production with good He retention and straightforward mineral separation, but with a poorly constrained production rate. Here we empirically calibrate the cosmogenic 3He production rate in ilmenite by measuring 3He concentrations in basalts with fine-grained (~20 lm cross-section) ilmenite and co-existing pyroxene or olivine from the Columbia River and Snake River Plain basalt provinces in the western United States. The concentration ratio of ilmenite to pyroxene and olivine is 0.78 ± 0.02, yielding an apparent cosmogenic 3He production rate of 93.6 ± 7.7 atom g-1 yr-1 that is 20–30% greater than expected from prior theoretical and empirical estimates for compositionally similar minerals. The production rate discrepancy arises from the high energy with which cosmic ray spallation reactions emit tritium and 3He and the associated long stopping distances that cause them to redistribute within a rock. Fine-grained phases with low cosmogenic 3He production rates, like ilmenite, will have anomalously high production rates owing to net implantation of 3He from the surrounding, higher 3He production rate, matrix. Semi-quantitative modeling indicates implantation of spallation 3He increases with decreasing ilmenite grain size, leading to production rates that exceed those in a large grain by ~10% when grain radii are <150 lm. The modeling predicts that for the ilmenite grain size in our samples, implantation causes production rates to be ~20% greater than expected for a large grain, and within uncertainty resolves the discrepancy between our calibrated production rate, theory, and rates from previous work. The redistribution effect is maximized when the host rock and crystals differ substantially in mean atomic number, as they do between whole-rock basalt and ilmenite. 
    more » « less
  2. Abstract We investigate the shallow plumbing system of the Deccan Traps Large Igneous Province using rock and mineral data from Giant Plagioclase Basalt (GPB) lava flows from around the entire province, but with a focus on the Saurashtra Peninsula, the Malwa Plateau, and the base and top of the Western Ghats (WG) lava pile. GPB lavas in the WG typically occur at the transition between chemically distinct basalt formations. Most GPB samples are evolved basalts, with high Fe and Ti contents, and show major and trace elements and Sr-Nd-Pb isotopic compositions generally similar to those of previously studied Deccan basalts. Major element modeling suggests that high-Fe, evolved melts typical of GPB basalts may derive from less evolved Deccan basalts by low-pressure fractional crystallization in a generally dry magmatic plumbing system. The basalts are strongly porphyritic, with 6–25% of mm- to cm-sized plagioclase megacrysts, frequently occurring as crystal clots, plus relatively rare olivine and clinopyroxene. The plagioclase crystals are mostly labradoritic, but some show bytownitic cores (general range of anorthite mol%: 78–55). A common feature is a strong Fe enrichment at the plagioclase rims, indicating interaction with an Fe-rich melt similar to that represented by the matrix compositions (FeOt up to 16–17 wt%). Plagioclase minor and trace elements and Sr isotopic compositions analyzed by laser ablation inductively coupled plasma mass spectrometry show evidence of a hybrid and magma mixing origin. In particular, several plagioclase crystals show variable 87Sr/86Sri, which only partially overlaps with the 87Sr/86Sri of the surrounding matrix. Diffusion modeling suggests residence times of decades to centuries for most plagioclase megacrysts. Notably, some plagioclase crystal clots show textural evidence of deformation as recorded by electron back-scatter diffraction analyses and chemical maps, which suggest that the plagioclase megacrysts were deformed in a crystal-rich environment in the presence of melt. We interpret the plagioclase megacrysts as remnants of a crystal mush originally formed in the shallow plumbing system of the Deccan basalts. In this environment, plagioclase acquired a zoned composition due to the arrival of chemically distinct basaltic magmas. Prior to eruption, a rapidly rising but dense Fe-rich magma was capable of disrupting the shallow level crystal mush, remobilizing part of it and carrying a cargo of buoyant plagioclase megacrysts. Our findings suggest that basaltic magmas from the Deccan Traps, and possibly from LIPs in general, are produced within complex transcrustal magmatic plumbing systems with widespread crystal mushes developed in the shallow crust. 
    more » « less
  3. Abstract Using a 3‐D mantle wedge flow field for a generic oblique subduction system, we calculate elastic tensors of mineral aggregates in the mantle wedge for A‐, B‐, C‐, and E‐type olivine crystal preferred orientations (CPO) and apply the calculated elastic tensor in the forward calculation of shear‐wave splitting (SWS) through the mantle wedge. We find that the hexagonal approximation of the full tensor does not affect the SWS parameters (the fast direction and the delay time) significantly for all CPO types except that the delay time for C‐type CPO becomes shorter. Additionally, we find that despite the 3‐D mantle flow field that results from oblique subduction, the fast direction is margin‐normal for A‐, C‐ and E‐type CPOs and margin‐parallel for B‐type CPO. 
    more » « less
  4. We present Thermobar, a new open-source Python3 package for calculating pressures, temperatures, and melt compositions from mineral and mineral-melt equilibrium. Thermobar allows users to perform calculations with >100 popular parametrizations involving liquid, olivine-liquid, olivine-spinel, pyroxene only, pyroxene-liquid, two pyroxene, feldspar-liquid, two feldspar, amphibole only, amphibole-liquid, and garnet equilibria. Thermobar is the first open-source tool which can match up all possible pairs of phases from a given region, and apply various equilibrium tests to identify pairs from which to calculate pressures and temperatures (e.g. pyroxene-liquid, two pyroxene, feldspar-liquid, two feldspar, amphibole-liquid). Thermobar also contains functions allowing users to propagate analytical errors using Monte-Carlo methods, convert pressures to depths using different crustal density profiles, plot mineral classification and mineral-melt equilibrium diagrams, calculate liquid viscosities, and convert between oxygen fugacity values, buffer positions and Fe speciation in a silicate melt. Thermobar can be downloaded using pip and extensive documentation is available at https://thermobar.readthedocs.io/. 
    more » « less
  5. Abstract After more than three months of lava dome extrusion, La Soufrière (St Vincent) transitioned to a series of explosive eruptions in April 2021. Here we present a time-series petrologic analysis of the phenocryst and microlite populations during the firstc.48 h of explosivity to constrain ascent conditions and processes that drove changes in behaviour. Primary eruptive products were crystal-rich (45–50 vol%) basaltic andesites with similar phenocryst phase assemblages and compositions. The change in eruptive style is consistent with overpressurization as a consequence of second boiling from anhydrous microlite crystallization. The microlites display variation between the explosive phases, with two populations: (1) ‘inherited’ − normally zoned high-An plagioclase (>An70) + olivine (Fo62–79) + clinopyroxene + titanomagnetite, inferred to have crystallized at depths >15 km and high water pressures; (2) ‘juvenile’ − unzoned plagioclase (An45–65) + clinopyroxene + orthopyroxene + intermediate pyroxene (Wo12–38) + titanomagnetite, inferred to have crystallized upon ascent due to decompression and degassing. Scoria from the first explosions featured extensive groundmass crystallization and a significant ‘inherited’ microlite population. Later explosions had a more abundant ‘juvenile’ microlite population and lower crystallinity, consistent with more rapid ascent from depth, initiated by decompression following initial blasts and destruction of the lava dome. 
    more » « less