3-ethyl-6-vinyltetrahydro-2H-pyran-2-one (EVP) is a CO2-derived lactone synthesized via Pd-catalyzed telomerization of butadiene. As EVP is 28.9% by weight CO2, it has received significant recent attention as an intermediary for the synthesis of high CO2-content polymers. This article provides an overview of strategies for the polymerization of EVP to a wide variety of polymer structures, ranging from radical polymerizations to ring-opening polymerizations, that each take unique advantage of the highly functionalized lactone.
more »
« less
Sustainable Copolymer Synthesis from Carbon Dioxide and Butadiene
Carbon dioxide (CO2) has long been recognized as an ideal C1 feedstock comonomer for producing sustainable materials because it is renewable, abundant, and cost-effective. However, activating CO2 presents a significant challenge because it is highly oxidized and stable. A CO2/butadiene-derived δ-valerolactone (EVP), generated via palladium-catalyzed telomerization between CO2 and butadiene, has emerged as an attractive intermediate for producing sustainable copolymers from CO2 and butadiene. Owing to the presence of two active carbon–carbon double bonds and a lactone unit, EVP serves as a versatile intermediate for creating sustainable copolymers with a CO2 content of up to 29 wt % (33 mol %). In this Review, advances in the synthesis of copolymers from CO2 and butadiene with divergent structures through various polymerization protocols have been summarized. Achievements made in homo- and copolymerization of EVP or its derivatives are comprehensively reviewed, while the postmodification of the obtained copolymers to access new polymers are also discussed. Meanwhile, potential applications of the obtained copolymers are also discussed. The literature references were sorted into sections based on polymerization strategies and mechanisms, facilitating readers in gaining a comprehensive view of the present chemistry landscape and inspiring innovative approaches to synthesizing novel CO2-derived copolymers.
more »
« less
- PAR ID:
- 10498406
- Publisher / Repository:
- ACS Publications
- Date Published:
- Journal Name:
- Chemical Reviews
- Volume:
- 124
- Issue:
- 6
- ISSN:
- 0009-2665
- Page Range / eLocation ID:
- 3590 to 3607
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Carbon dioxide is inexpensive and abundant, and its prevalence as waste makes it attractive as a sustainable chemical feedstock. Although there are examples of copolymerizations of CO2 with high-energy monomers, the direct copolymerization of CO2 with olefins has not been reported. Herein, an alternate route to functionalizable, recyclable polyesters derived from CO2, butadiene and hydrogen via an intermediary lactone, 3-ethyl-6-vinyltetrahydro-2H-pyran-2-one, is described. Catalytic ring-opening polymerization of the lactone by 1,5,7-triazabicyclo[4.4.0]dec-5-ene yields polyesters with molar masses up to 13.6 kg/mol and pendent vinyl sidechains that can undergo post-polymerization functionalization. The polymer has a low ceiling temperature of 138 ºC, allowing for facile chemical recycling, and is inherently biodegradable under aerobic aqueous conditions (OECD-301B protocol). These results mark the first example of a well-defined polyester derived from CO2, olefins and hydrogen, expanding access to new polymer feedstocks that were once considered unfeasible.more » « less
-
Biomass-derived polymer materials are emerging as sustainable and low-carbon footprint alternatives to the current petroleum-based commodity plastics. In the past decade, the ring-opening metathesis polymerization (ROMP) technique has been widely used for the polymerization of cyclic olefin monomers derived from biorenewable resources, giving rise to a diverse set of biobased polymer materials. However, most synthetic biobased polymers made by ROMP are nondegradable because of their all-carbon backbones. Herein, we present a modular synthetic strategy to acid-degradable poly(enol ether)s via ring-opening metathesis copolymerization of biorenewable oxanorbornenes and 3,4-dihydropyran (DHP). 1H NMR analysis reveals that the percentage of DHP units in the resulting copolymers gradually increases as the feed ratio of DHP to oxanorbornene increases. The composition of the copolymers plays a pivotal role in governing their thermal properties. Thermogravimetric analysis shows that an increasing percentage of DHP results in a decrease in the decomposition temperatures, suggesting that the incorporation of enol ether groups in the polymer backbone reduces the thermal stability of the copolymers. Moreover, a wide range of glass transition temperatures (16–165 °C) can be achieved by tuning the copolymer composition and the oxanorbornene structure. Critically, all of the poly(enol ether)s developed in this study are degradable under mildly acidic conditions. A higher incorporation of DHP in the copolymer leads to enhanced degradability, as evidenced by smaller final degradation products. Altogether, this study provides a facile approach for synthesizing biorenewable and degradable polymer materials with highly tunable thermal properties desired for their potential industrial applications.more » « less
-
The catalytic conversion of carbon dioxide into polymers via high-energy comonomers offers a sustainable, low-cost, and low-emission approach for developing conveniently manufactured high-performance materials without competing for land-use or food resources. We present the synthesis of poly(amidoamine) polymers stoichiometrically derived from carbon dioxide, butadiene, and amines displaying useful mechanical properties (tensile strength 43 MPa, Young’s modulus 840 MPa, and flexural modulus 2.8 GPa). The low viscosity precursors are applicable to producing carbon fiber reinforced polymers with fiber wetting and rapid network formation (16 minutes at 150°C). This work reveals that internal hydrogen-bonding catalyzes the ring-opening polymerization, and the intramolecular alcohol moiety promotes chemical recyclability in acidic conditions, allowing fiber recovery with <1.0 wt % difference from virgin fiber and monomer in 72% yield.more » « less
-
Management of the plastic industry is a momentous challenge, one that pits enormous societal benefits against an accumulating reservoir of nearly indestructible waste. A promising strategy for recycling polyethylene (PE) and isotactic polypropylene ( i PP), constituting roughly half the plastic produced annually worldwide, is melt blending for reformulation into useful products. Unfortunately, such blends are generally brittle and useless due to phase separation and mechanically weak domain interfaces. Recent studies have shown that addition of small amounts of semicrystalline PE- i PP block copolymers (ca. 1 wt%) to mixtures of these polyolefins results in ductility comparable to the pure materials. However, current methods for producing such additives rely on expensive reagents, prohibitively impacting the cost of recycling these inexpensive commodity plastics. Here, we describe an alternative strategy that exploits anionic polymerization of butadiene into block copolymers, with subsequent catalytic hydrogenation, yielding E and X blocks that are individually melt miscible with PE and i PP, where E and X are poly(ethylene- ran -ethylethylene) random copolymers with 6 wt% and 90 wt% ethylethylene repeat units, respectively. Cooling melt blended mixtures of PE and i PP containing 1 wt% of the triblock copolymer EXE of appropriate molecular weight, results in mechanical properties competitive with the component plastics. Blend toughness is obtained through interfacial topological entanglements of the amorphous X polymer and semicrystalline i PP, along with anchoring of the E blocks through cocrystallization with the PE homopolymer. Significantly, EXE can be inexpensively produced using currently practiced industrial scale polymerization methods, offering a practical approach to recycling the world’s top two plastics.more » « less
An official website of the United States government

