skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Concurrently assessing water supply and demand is critical for evaluating vulnerabilities to climate change
Abstract Aligning water supply with demand is a challenge, particularly in areas with large seasonal variation in precipitation and those dominated by winter precipitation. Climate change is expected to exacerbate this challenge, increasing the need for long‐term planning. Long‐term projections of water supply and demand that can aid planning are mostly published as agency reports, which are directly relevant to decision‐making but less likely to inform future research. We present 20‐year water supply and demand projections for the Columbia River, produced in partnership with the Washington State Dept. of Ecology. This effort includes integrated modeling of future surface water supply and agricultural demand by 2040 and analyses of future groundwater trends, residential demand, instream flow deficits, and curtailment. We found that shifting timing in water supply could leave many eastern Washington watersheds unable to meet late‐season out‐of‐stream demands. Increasing agricultural or residential demands in watersheds could exacerbate these late‐season vulnerabilities, and curtailments could become more common for rivers with federal or state instream flow rules. Groundwater trends are mostly declining, leaving watersheds more vulnerable to surface water supply or demand changes. Both our modeling framework and agency partnership can serve as an example for other long‐term efforts that aim to provide insights for water management in a changing climate elsewhere around the world.  more » « less
Award ID(s):
2115169
PAR ID:
10498786
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
JAWRA Journal of the American Water Resources Association
Volume:
60
Issue:
2
ISSN:
1093-474X
Format(s):
Medium: X Size: p. 543-571
Size(s):
p. 543-571
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Frequent droughts, seasonal precipitation, and growing agricultural water demand in the Yakima River Basin (YRB), located in Washington State, increase the challenges of optimizing water provision for agricultural producers. Increasing water storage through managed aquifer recharge (MAR) can potentially relief water stress from single and multi-year droughts. In this study, we developed an aggregated water resources management tool using a System Dynamics (SD) framework for the YRB and evaluated the MAR implementation strategy and the effectiveness of MAR in alleviating drought impacts on irrigation reliability. The SD model allocates available water resources to meet instream target flows, hydropower demands, and irrigation demand, based on system operation rules, irrigation scheduling, water rights, and MAR adoption. Our findings suggest that the adopted infiltration area for MAR is one of the main factors that determines the amount of water withdrawn and infiltrated to the groundwater system. The implementation time frame is also critical in accumulating MAR entitlements for single-year and multi-year droughts mitigation. In addition, adoption behaviors drive a positive feedback that MAR effectiveness on drought mitigation will encourage more MAR adoptions in the long run. MAR serves as a promising option for water storage management and a long-term strategy for MAR implementation can improve system resilience to unexpected droughts. 
    more » « less
  2. Abstract California’s Central Valley is one of the world’s most productive agricultural regions. Its high-value fruit, vegetable, and nut crops rely on surface water imports from a vast network of reservoirs and canals as well as groundwater, which has been substantially overdrafted to support irrigation. The region has undergone a shift to perennial (tree and vine) crops in recent decades, which has increased water demand amid a series of severe droughts and emerging regulations on groundwater pumping. This study quantifies the expansion of perennial crops in the Tulare Lake Basin, the southern region of the Central Valley with limited natural water availability. A gridded crop type dataset is compiled on a 1 mi2spatial resolution from a historical database of pesticide permits over the period 1974–2016 and validated against aggregated county-level data. This spatial dataset is then analyzed by irrigation district, the primary spatial scale at which surface water supplies are determined, to identify trends in planting decisions and agricultural water demand over time. Perennial crop acreage has nearly tripled over this period, and currently accounts for roughly 60% of planted area and 80% of annual revenue. These trends show little relationship with water availability and have been driven primarily by market demand. From this data, we focus on the increasing minimum irrigation needs each year to sustain perennial crops. Results indicate that under a range of plausible future regulations on groundwater pumping ranging from 10% to 50%, water supplies may fail to consistently meet demands, increasing losses by up to 30% of annual revenues. More broadly, the datasets developed in this work will support the development of dynamic models of the integrated water-agriculture system under uncertain climate and regulatory changes to understand the combined impacts of water supply shortages and intensifying irrigation demand. 
    more » « less
  3. The rapid growth of demand in agricultural production has created water scarcity issues worldwide. Simultaneously, climate change scenarios have projected that more frequent and severe droughts are likely to occur. Adaptive water resources management has been suggested as one strategy to better coordinate surface water and groundwater resources (i.e., conjunctive water use) to address droughts. In this study, we enhanced an aggregated water resource management tool that represents integrated agriculture, water, energy, and social systems. We applied this tool to the Yakima River Basin (YRB) in Washington State, USA. We selected four indicators of system resilience and sustainability to evaluate four adaptation methods associated with adoption behaviors in alleviating drought impacts on agriculture under RCP4.5 and RCP 8.5 climate change scenarios. We analyzed the characteristics of four adaptation methods, including greenhouses, crop planting time, irrigation technology, and managed aquifer recharge as well as alternating supply and demand dynamics to overcome drought impact. The results show that climate conditions with severe and consecutive droughts require more financial and natural resources to achieve well-implemented adaptation strategies. For long-term impact analysis, managed aquifer recharge appeared to be a cost-effective and easy-to-adopt option, whereas water entitlements are likely to get exhausted during multiple consecutive drought events. Greenhouses and water-efficient technologies are more effective in improving irrigation reliability under RCP 8.5 when widely adopted. However, implementing all adaptation methods together is the only way to alleviate most of the drought impacts projected in the future. The water resources management tool helps stakeholders and researchers gain insights in the roles of modern inventions in agricultural water cycle dynamics in the context of interactive multi-sector systems. 
    more » « less
  4. The Hashemite Kingdom of Jordan is confronted with a severe freshwater crisis shaped by excess water demand and intermittent public supply. In Jordan’s capital and most populous city, Amman, the pervasive water shortage gave rise to private tanker water operations, which transport groundwater from wells in the vicinity of the city and sell it to urban consumers. These tanker water markets have received little attention in the literature up to date, particularly with regard to their relevance for commercial water users. This paper aims to empirically estimate the water demand of commercial establishments in Amman under public supply rationing and to assess to which extent tanker operations contribute to meeting commercial water needs. Building on a prior simulation model of residential water consumption, the results of three extensive surveys concerned with tanker water markets and various geographic data, we develop a spatial agent-based model of the water consumption behavior of commercial establishments in different sizes. According to our estimation, 35–45% of the overall water volume consumed by the commercial sector stems from tanker operations, depending on the season. We find that the local disparities in access to affordable network water, along with the dispersion of groundwater wells around the city, result in considerable spatial differences in tanker water consumption. The outcome of this analysis could be relevant for policy attempting to enhance freshwater sustainability in Jordan. 
    more » « less
  5. Climate oscillations ranging from years to decades drive precipitation variability in many river basins globally. As a result, many regions will require new water infrastructure investments to maintain reliable water supply. However, current adaptation approaches focus on long-term trends, preparing for average climate conditions at mid- or end-of-century. The impact of climate oscillations, which bring prolonged and variable but temporary dry periods, on water supply augmentation needs is unknown. Current approaches for theory development in nature-society systems are limited in their ability to realistically capture the impacts of climate oscillations on water supply. Here, we develop an approach to build middle-range theory on how common climate oscillations affect low-cost, reliable water supply augmentation strategies. We extract contrasting climate oscillation patterns across sub-Saharan Africa and study their impacts on a generic water supply system. Our approach integrates climate model projections, nonstationary signal processing, stochastic weather generation, and reinforcement learning–based advances in stochastic dynamic control. We find that longer climate oscillations often require greater water supply augmentation capacity but benefit more from dynamic approaches. Therefore, in settings with the adaptive capacity to revisit planning decisions frequently, longer climate oscillations do not require greater capacity. By building theory on the relationship between climate oscillations and least-cost reliable water supply augmentation, our findings can help planners target scarce resources and guide water technology and policy innovation. This approach can be used to support climate adaptation planning across large spatial scales in sectors impacted by climate variability. 
    more » « less