We consider the KZ differential equations over C in the case, when the hypergeometric solutions are one-dimensional integrals. We also consider the same differential equations over a finite field F_p. We study the polynomial solutions of these differential equations over F_p, constructed in a previous work joint with V. Schechtman and called the F_p-hypergeometric solutions. The dimension of the space of F_p-hypergeometric solutions depends on the prime number p. We say that the KZ equations have ample reduction for a prime p, if the dimension of the space of F_p-hypergeometric solutions is maximal possible, that is, equal to the dimension of the space of solutions of the corresponding KZ equations over C. Under the assumption of ample reduction, we prove a determinant formula for the matrix of coordinates of basis F_p-hypergeometric solutions. The formula is analogous to the corresponding formula for the determinant of the matrix of coordinates of basis complex hypergeometric solutions, in which binomials (z_i−z_j)^{M_i+M_j} are replaced with (z_i−z_j)^{Mi+Mj−p} and the Euler gamma function Γ(x) is replaced with a suitable F_p-analog defined on F_p
more »
« less
Distribution of values of Gaussian hypergeometric functions
In the 1980’s, Greene defined hypergeometric functions over finite fields using Jacobi sums. The framework of his theory establishes that these functions possess many properties that are analogous to those of the classical hypergeometric series studied by Gauss and Kummer. These functions have played important roles in the study of Ap ́ery-style supercongruences, the Eichler-Selberg trace formula, Galois representations, and zeta-functions of arithmetic varieties. We study the value distribution (over large finite fields) of natural families of these functions. For the 2F1 functions, the limiting distribution is semicircular (i.e. SU(2)), whereas the distribution for the 3F2 functions is the Batman distribution for the traces of the real orthogonal group O3.
more »
« less
- Award ID(s):
- 2055118
- PAR ID:
- 10498901
- Publisher / Repository:
- International Press
- Date Published:
- Journal Name:
- Pure and Applied Mathematics Quarterly
- Volume:
- 19
- Issue:
- 1
- ISSN:
- 1558-8599
- Page Range / eLocation ID:
- 371 to 407
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We consider Riesz energy problems with radial external fields. We study the question of whether or not the equilibrium measure is the uniform distribution on a sphere. We develop general necessary and general sufficient conditions on the external field that apply to powers of the Euclidean norm as well as certain Lennard – Jones type fields. Additionally, in the former case, we completely characterize the values of the power for which a certain dimension reduction phenomenon occurs: the support of the equilibrium measure becomes a sphere. We also briefly discuss the relationship between these problems and certain constrained optimization problems. Our approach involves the Frostman characterization, the Funk–Hecke formula, and the calculus of hypergeometric functions.more » « less
-
The confluent hypergeometric equation, also known as Kummer's equation, is one of the most important differential equations in physics, chemistry, and engineering. Its two power series solutions are the Kummer function, M(a,b,z), often referred to as the confluent hypergeometric function of the first kind, and M ≡ z1-bM(1+a-b, 2-b,z), where a and b are parameters that appear in the differential equation. A third function, the Tricomi function, U(a,b,z), sometimes referred to as the confluent hypergeometric function of the second kind, is also a solution of the confluent hypergeometric equation that is routinely used. Contrary to common procedure, all three of these functions (and more) must be considered in a search for the two linearly independent solutions of the confluent hypergeometric equation. There are situations, when a, b, and a - b are integers, where one of these functions is not defined, or two of the functions are not linearly independent, or one of the linearly independent solutions of the differential equation is different from these three functions. Many of these special cases correspond precisely to cases needed to solve problems in physics. This leads to significant confusion about how to work with confluent hypergeometric equations, in spite of authoritative references such as the NIST Digital Library of Mathematical Functions. Here, we carefully describe all of the different cases one has to consider and what the explicit formulas are for the two linearly independent solutions of the confluent hypergeometric equation. The procedure to properly solve the confluent hypergeometric equation is summarized in a convenient table. As an example, we use these solutions to study the bound states of the hydrogenic atom, correcting the standard treatment in textbooks. We also briefly consider the cutoff Coulomb potential. We hope that this guide will aid physicists to properly solve problems that involve the confluent hypergeometric differential equation.more » « less
-
null (Ed.)We consider the KZ differential equations over C in the case, when the hypergeometric solutions are one-dimensional integrals.We also consider the same differential equations over a finite field F_p. We study the space of polynomial solutions of these differential equations over F_p, constructed in a previous work by Schechtman and the second author. Using Hasse–Witt matrices, we identify the space of these polynomial solutions over F_p with the space dual to a certain subspace of regular differentials on an associated curve. We also relate these polynomial solutions over F_p and the hypergeometric solutions over C.more » « less
An official website of the United States government

