skip to main content


This content will become publicly available on April 4, 2025

Title: A Bayesian hierarchical model for the analysis of visual analogue scaling tasks

In psychophysics and psychometrics, an integral method to the discipline involves charting how a person’s response pattern changes according to a continuum of stimuli. For instance, in hearing science, Visual Analog Scaling tasks are experiments in which listeners hear sounds across a speech continuum and give a numeric rating between 0 and 100 conveying whether the sound they heard was more like word “a” or more like word “b” (i.e. each participant is giving a continuous categorization response). By taking all the continuous categorization responses across the speech continuum, a parametric curve model can be fit to the data and used to analyze any individual’s response pattern by speech continuum. Standard statistical modeling techniques are not able to accommodate all of the specific requirements needed to analyze these data. Thus, Bayesian hierarchical modeling techniques are employed to accommodate group-level non-linear curves, individual-specific non-linear curves, continuum-level random effects, and a subject-specific variance that is predicted by other model parameters. In this paper, a Bayesian hierarchical model is constructed to model the data from a Visual Analog Scaling task study of mono-lingual and bi-lingual participants. Any nonlinear curve function could be used and we demonstrate the technique using the 4-parameter logistic function. Overall, the model was found to fit particularly well to the data from the study and results suggested that the magnitude of the slope was what most defined the differences in response patterns between continua.

 
more » « less
NSF-PAR ID:
10499008
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Statistical Methods in Medical Research
ISSN:
0962-2802
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Research on speech categorization and phoneme recognition has relied heavily on tasks in which participants listen to stimuli from a speech continuum and are asked to either classify each stimulus (identification) or discriminate between them (discrimination). Such tasks rest on assumptions about how perception maps onto discrete responses that have not been thoroughly investigated. Here, we identify critical challenges in the link between these tasks and theories of speech categorization. In particular, we show that patterns that have traditionally been linked to categorical perception could arise despite continuous underlying perception and that patterns that run counter to categorical perception could arise despite underlying categorical perception. We describe an alternative measure of speech perception using a visual analog scale that better differentiates between processes at play in speech categorization, and we review some recent findings that show how this task can be used to better inform our theories. 
    more » « less
  2. Abstract

    We developed an open source, extensible Python‐based framework, that we call the Versatile Modeling Of Deformation (VMOD), for forward and inverse modeling of crustal deformation sources. VMOD abstracts from specific source model implementations, data types and inversion methods. We implement the most common geodetic source models which can be combined to model and analyze multi‐source deformation. VMOD supports Global Navigation Satellite System (GNSS), InSAR, electronic distance measurement, Leveling and tilt data. To infer source characteristics from observations, VMOD implements non‐linear least squares and Markov Chain Monte‐Carlo Bayesian inversions, including joint inversions using different sources of data. VMOD's structure allows for easy integration of new geodetic models, data types, and inversion strategies. We benchmark the forward models against other published results and the inversion approaches against other implementations. We apply VMOD to analyze deformation at Unimak Island, Alaska, observed with continuous and campaign GNSS, and ascending and descending InSAR time series generated from Sentinel‐1 satellite radar acquisitions. These data show an inflation pattern at Westdahl volcano and subsidence at Fisher Caldera. We use VMOD to test a range of source models by jointly inverting the GNSS and InSAR data sets. Our final model simultaneously constrains the parameters of two sources. Our results reveal a depressurizing spheroid under Fisher Caldera ∼4–6 km deep, contracting at a rate of ∼2–3 Mm3/yr, and a pressurizing spherical source underneath Westdahl volcano ∼6–8 km deep, inflating at ∼5 Mm3/yr. This and past applications of VMOD to volcanic unrest benefit from an extensible framework which supports jointly inversions of data sets for parameters of easily composable multi‐source models.

     
    more » « less
  3. Objective: The Temporal Response Function (TRF) is a linear model of neural activity time-locked to continuous stimuli, including continuous speech. TRFs based on speech envelopes typically have distinct components that have provided remarkable insights into the cortical processing of speech. However, current methods may lead to less than reliable estimates of single-subject TRF components. Here, we compare two established methods, in TRF component estimation, and also propose novel algorithms that utilize prior knowledge of these components, bypassing the full TRF estimation. Methods: We compared two established algorithms, ridge and boosting, and two novel algorithms based on Subspace Pursuit (SP) and Expectation Maximization (EM), which directly estimate TRF components given plausible assumptions regarding component characteristics. Single-channel, multi-channel, and source-localized TRFs were fit on simulations and real magnetoencephalographic data. Performance metrics included model fit and component estimation accuracy. Results: Boosting and ridge have comparable performance in component estimation. The novel algorithms outperformed the others in simulations, but not on real data, possibly due to the plausible assumptions not actually being met. Ridge had slightly better model fits on real data compared to boosting, but also more spurious TRF activity. Conclusion: Results indicate that both smooth (ridge) and sparse (boosting) algorithms perform comparably at TRF component estimation. The SP and EM algorithms may be accurate, but rely on assumptions of component characteristics. Significance: This systematic comparison establishes the suitability of widely used and novel algorithms for estimating robust TRF components, which is essential for improved subject-specific investigations into the cortical processing of speech. 
    more » « less
  4. For much of its history, categorical perception was treated as a foundational theory of speech perception, which suggested that quasi-discrete categorization was a goal of speech perception. This had a profound impact on bilingualism research which adopted similar tasks to use as measures of nativeness or native-like processing, implicitly assuming that any deviation from discreteness was a deficit. This is particularly problematic for listeners like heritage speakers whose language proficiency, both in their heritage language and their majority language, is questioned. However, we now know that in the monolingual listener, speech perception is gradient and listeners use this gradiency to adjust subphonetic details, recover from ambiguity, and aid learning and adaptation. This calls for new theoretical and methodological approaches to bilingualism. We present the Visual Analogue Scaling task which avoids the discrete and binary assumptions of categorical perception and can capture gradiency more precisely than other measures. Our goal is to provide bilingualism researchers new conceptual and empirical tools that can help examine speech categorization in different bilingual communities without the necessity of forcing their speech categorization into discrete units and without assuming a deficit model. 
    more » « less
  5. Speech processing is highly incremental. It is widely accepted that human listeners continuously use the linguistic context to anticipate upcoming concepts, words, and phonemes. However, previous evidence supports two seemingly contradictory models of how a predictive context is integrated with the bottom-up sensory input: Classic psycholinguistic paradigms suggest a two-stage process, in which acoustic input initially leads to local, context-independent representations, which are then quickly integrated with contextual constraints. This contrasts with the view that the brain constructs a single coherent, unified interpretation of the input, which fully integrates available information across representational hierarchies, and thus uses contextual constraints to modulate even the earliest sensory representations. To distinguish these hypotheses, we tested magnetoencephalography responses to continuous narrative speech for signatures of local and unified predictive models. Results provide evidence that listeners employ both types of models in parallel. Two local context models uniquely predict some part of early neural responses, one based on sublexical phoneme sequences, and one based on the phonemes in the current word alone; at the same time, even early responses to phonemes also reflect a unified model that incorporates sentence-level constraints to predict upcoming phonemes. Neural source localization places the anatomical origins of the different predictive models in nonidentical parts of the superior temporal lobes bilaterally, with the right hemisphere showing a relative preference for more local models. These results suggest that speech processing recruits both local and unified predictive models in parallel, reconciling previous disparate findings. Parallel models might make the perceptual system more robust, facilitate processing of unexpected inputs, and serve a function in language acquisition. MEG Data MEG data is in FIFF format and can be opened with MNE-Python. Data has been directly converted from the acquisition device native format without any preprocessing. Events contained in the data indicate the stimuli in numerical order. Subjects R2650 and R2652 heard stimulus 11b instead of 11. Predictor Variables The original audio files are copyrighted and cannot be shared, but the make_audio folder contains make_clips.py which can be used to extract the exact clips from the commercially available audiobook (ISBN 978-1480555280). The predictors directory contains all the predictors used in the original study as pickled eelbrain objects. They can be loaded in Python with the eelbrain.load.unpickle function. The TextGrids directory contains the TextGrids aligned to the audio files. Source Localization The localization.zip file contains files needed for source localization. Structural brain models used in the published analysis are reconstructed by scaling the FreeSurfer fsaverage brain (distributed with FreeSurfer) based on each subject's `MRI scaling parameters.cfg` file. This can be done using the `mne.scale_mri` function. Each subject's MEG folder contains a `subject-trans.fif` file which contains the coregistration between MEG sensor space and (scaled) MRI space, which is used to compute the forward solution. 
    more » « less