This work provides a detailed multi‐component analysis of aromaticity in monosubstituted (X = CH3, C, C, NH2, NH−, NH+, OH, O−, and O+) and
The photophysical properties of a series of recently synthesized single benzene fluorophores were investigated using ensemble density functional theory calculations. The energetic stability of the ground and excited state species were counterposed against the aromaticity index derived from local vibrational modes. It was found that the large Stokes shift of the fluorophores (up to
- Award ID(s):
- 2102461
- NSF-PAR ID:
- 10499018
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Computational Chemistry
- Volume:
- 45
- Issue:
- 13
- ISSN:
- 0192-8651
- Format(s):
- Medium: X Size: p. 1033-1045
- Size(s):
- p. 1033-1045
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract para ‐homodisubstituted (X = CH3, CH2, NH2, NH, OH, and O) benzene derivatives. We investigate the effects of substituents using single‐reference (B3LYP/DFT) and multireference (CASSCF/MRCI) methods, focusing on structural (HOMA), vibrational (AI(vib)), topological (ELFπ ), electronic (MCI), magnetic (NICS), and stability (S0–T1splitting) properties. The findings reveal that appropriateπ ‐electron‐donating andπ ‐electron‐accepting substituents with suitable size and symmetry can interact with theπ ‐system of the ring, significantly influencingπ ‐electron delocalization. While the charge factor has a minimal impact onπ ‐electron delocalization, the presence of ap zorbital capable of interacting with theπ ‐electron delocalization is the primary factor leading to a deviation from the typical aromaticity characteristics observed in benzene. -
From local mode stretching force constants and topological electron density analysis, computed at either the UM06/6-311G(d,p), UM06/SDD, or UM05-2X/6– 31++G(d,p) level of theory, we elucidate on the nature/strength of the parallel π- stacking interactions (i.e. pancake bonding) of the 1,2-dithia-3,5-diazolyl dimer, 1,2-diselena-3,5-diazolyl dimer, 1,2-tellura-3,5-diazolyl dimer, phenalenyl dimer, 2,5,8-tri-methylphenalenyl dimer, and the 2,5,8-tri-t-butylphenalenyl dimer. We use local mode stretching force constants to derive an aromaticity delocalization index (AI) for the phenalenyl-based dimers and their monomers as to determine the effect of substitution and dimerization on aromaticity, as well as determining what bond property governs alterations in aromaticity. Our results reveal the strength of the C⋯C contacts and of the rings of the di-chalcodiazoyl dimers investigated decrease in parallel with decreasing chalcogen⋯chalcogen bond strength. Energy density values Hb suggest the S⋯S and Se⋯Se pancake bonds of 1,2-dithia-3,5- diazolyl dimer and the 1,2-diselena-3,5-diazolyl dimer are covalent in nature. We observe the pancake bonds, of all phenalenyl-based dimers investigated, to be electrostatic in nature. In contrast to their monomer counterparts, phenalenyl- based dimers increase in aromaticity primarily due to CC bond strengthening. For phenalenyl-based dimers we observed that the addition of bulky substituents steadily decreased the system aromaticity predominately due to CC bond weakening.more » « less
-
null (Ed.)σ-Hole bonding interactions ( e.g. , tetrel, pnictogen, chalcogen, and halogen bonding) can polarize π-electrons to enhance cyclic [4 n ] π-electron delocalization ( i.e. , antiaromaticity gain) or cyclic [4 n + 2] π-electron delocalization ( i.e. , aromaticity gain). Examples based on the ketocyclopolyenes: cyclopentadienone, tropone, and planar cyclononatetraenone are presented. Recognizing this relationship has implications, for example, for tuning the electronic properties of fulvene-based π-conjugated systems such as 9-fluorenone.more » « less
-
Abstract Signals recorded by two stations in the Brazilian region: [Fortaleza (3.74°S, 38.57°W) and Inconfidentes (22.31°S, 46.32°W)], receiving L1 transmissions from different geostationary satellites, were used to evaluate the amplitude scintillation index
S 4and several characteristics of scintillation events (continuous record withS 4 > 0.2) during nighttime hours (18:00 LT–02:00 LT) in the years 2014–2016. The effects from solar activity, season, and local time on the number of scintillation events per night, maximum scintillation, scintillation event duration, and spacing between consecutive events will be discussed. The results indicate that: (a) scintillation occurs from September to March in both links; (b) the most likely numbers of observed scintillation events per night were two or three, particularly during the first 2 years; (c) on average, the first scintillation event usually had larger maximumS 4values when compared to those of the later ones along the night; (d) the first scintillation event had a longer mean duration than the succeeding ones in a given night; (e) the durations of scintillation events, regardless of their numbers per night and the location, decreased with local time; (f) the opposite dependence of spacings between consecutive events on local time was observed; (g) the cumulative distribution functions of the scintillation onset time indicated a strong dependence on the dip latitude of the station; and (h) early occurrences of onset times are directly related to the increased probability of the occurrence of multiple scintillation events. -
Nitro-functionalized metal–organic frameworks (MOFs), such as Al-MIL-53-NO 2 , have been widely used in quantitative hydrogen sulfide (H 2 S) detection based on the “turn-on” effect, where fluorescence enhancements were observed upon contact with H 2 S. This was believed to be caused by the fact that the electron-withdrawing –NO 2 groups in the initial non-luminescent MOFs were reduced to electron-donating –NH 2 groups in the sensing process. However, since most H 2 S detection is conducted in a suspension system consisting of MOFs and solvents, it is still unclear whether these –NH 2 groups are on MOFs or in the liquid. Using Al-MIL-53-NO 2 as a model MOF, this work aims to answer this question. Specifically, the supernatant and undissolved particles separated from the Al-MIL-53-NO 2 suspensions after being exposed to H 2 S were analyzed systematically. The results showed that it is the free BDC-NH 2 (2-aminobenzene-1,4-dicarboxylic acid) in the solution rather than the formation of Al-MIL-53-NH 2 that really caused the fluorescence enhancement. In particular, the formed BDC-NH 2 was reduced from the shedded BDC-NO 2 (2-nitrobenzene-1,4-dicarboxylic acid) during the decomposition of Al-MIL-53-NO 2 , which was attacked by OH − in the NaHS solution. We anticipate that this work will offer new ways of tracing fluorophores for MOF-based sensing applications in aqueous systems.more » « less