skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Long-term water temperature changes in Seneca Lake and their nexus to climate change and human activities
Abstract While many freshwater lakes have witnessed a rapid increase in surface water temperatures, the trends in subsurface water temperatures are not well-understood. This study explored the long-term subsurface water temperature change and its connection to climate change and human activities in Seneca Lake. Utilizing linear regression and the Theil-Sen estimator, the study identified a significant monotonic temperature trend in the subsurface water. Principal component and contribution analyses revealed that climate changes, particularly air warming, were more critical in explaining water temperature patterns, and human activities such as land cover change could exacerbate the impact of climate change. Using remotely sensed surface water temperature data, the study found a significant positive correlation between thermal pollution and water temperatures in the northern region of the lake, and after incorporating control variables, the regression analysis suggested that the adverse effects of thermal pollution are primarily confined to the area adjacent to the power plant. This research can offer fresh insights into lake ecology improvement and management strategies.  more » « less
Award ID(s):
2006633
PAR ID:
10544799
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP Science
Date Published:
Journal Name:
Environmental Research Communications
Volume:
5
Issue:
11
ISSN:
2515-7620
Page Range / eLocation ID:
111003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Globally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970–2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of + 0.37 °C decade−1, comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+ 0.08 kg m−3decade−1). In contrast, however, deepwater temperature trends showed little change on average (+ 0.06 °C decade−1), but had high variability across lakes, with trends in individual lakes ranging from − 0.68 °C decade−1to + 0.65 °C decade−1. The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences. 
    more » « less
  2. Freshwater ecosystems provide vital services, yet are facing increasing risks from global change. In particular, lake thermal dynamics have been altered around the world as a result of climate change, necessitating a predictive understanding of how climate will continue to alter lakes in the future as well as the associated uncertainty in these predictions. Numerous sources of uncertainty affect projections of future lake conditions but few are quantified, limiting the use of lake modeling projections as management tools. To quantify and evaluate the effects of two potentially important sources of uncertainty, lake model selection uncertainty and climate model selection uncertainty, we developed ensemble projections of lake thermal dynamics for a dimictic lake in New Hampshire, USA (Lake Sunapee). Our ensemble projections used four different climate models as inputs to five vertical one-dimensional (1-D) hydrodynamic lake models under three different climate change scenarios to simulate thermal metrics from 2006 to 2099. We found that almost all the lake thermal metrics modeled (surface water temperature, bottom water temperature, Schmidt stability, stratification duration, and ice cover, but not thermocline depth) are projected to change over the next century. Importantly, we found that the dominant source of uncertainty varied among the thermal metrics, as thermal metrics associated with the surface waters (surface water temperature, total ice duration) were driven primarily by climate model selection uncertainty, while metrics associated with deeper depths (bottom water temperature, stratification duration) were dominated by lake model selection uncertainty. Consequently, our results indicate that researchers generating projections of lake bottom water metrics should prioritize including multiple lake models for best capturing projection uncertainty, while those focusing on lake surface metrics should prioritize including multiple climate models. Overall, our ensemble modeling study reveals important information on how climate change will affect lake thermal properties, and also provides some of the first analyses on how climate model selection uncertainty and lake model selection uncertainty interact to affect projections of future lake dynamics. 
    more » « less
  3. Abstract Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change. 
    more » « less
  4. Abstract Water temperature dynamics in large inland lakes are interrelated with internal lake physics, ecosystem function, and adjacent land surface meteorology and climatology. Models for simulating and forecasting lake temperatures often rely on remote sensing andin situdata for validation.In situmonitoring platforms have the benefit of providing relatively precise measurements at multiple lake depths, but are often sparser (temporally and spatially) than remote sensing data. Here, we address the challenge of synthesizingin situlake temperature data by creating a standardized database of near-surface and subsurface measurements from 134 sites across 29 large North American lakes, with the primary goal of supporting an ongoing lake model validation study. We utilize data sources ranging from federal agency repositories to local monitoring group samples, with a collective historical record spanning January 1, 2000 through December 31, 2022. Our database has direct utility for validating simulations and forecasts from operational numerical weather prediction systems in large lakes whose extensive surface area may significantly influence nearby weather and climate patterns. 
    more » « less
  5. Abstract Freshwater ecosystems are experiencing greater variability due to human activities, necessitating new tools to anticipate future water quality. In response, we developed and deployed a real‐time iterative water temperature forecasting system (FLARE—Forecasting Lake And Reservoir Ecosystems). FLARE is composed of water temperature and meteorology sensors that wirelessly stream data, a data assimilation algorithm that uses sensor observations to update predictions from a hydrodynamic model and calibrate model parameters, and an ensemble‐based forecasting algorithm to generate forecasts that include uncertainty. Importantly, FLARE quantifies the contribution of different sources of uncertainty (driver data, initial conditions, model process, and parameters) to each daily forecast of water temperature at multiple depths. We applied FLARE to Falling Creek Reservoir (Vinton, Virginia, USA), a drinking water supply, during a 475‐day period encompassing stratified and mixed thermal conditions. Aggregated across this period, root mean square error (RMSE) of daily forecasted water temperatures was 1.13°C at the reservoir's near‐surface (1.0 m) for 7‐day ahead forecasts and 1.62°C for 16‐day ahead forecasts. The RMSE of forecasted water temperatures at the near‐sediments (8.0 m) was 0.87°C for 7‐day forecasts and 1.20°C for 16‐day forecasts. FLARE successfully predicted the onset of fall turnover 4–14 days in advance in two sequential years. Uncertainty partitioning identified meteorology driver data as the dominant source of uncertainty in forecasts for most depths and thermal conditions, except for the near‐sediments in summer, when model process uncertainty dominated. Overall, FLARE provides an open‐source system for lake and reservoir water quality forecasting to improve real‐time management. 
    more » « less