skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PME: pruning-based multi-size embedding for recommender systems
Embedding is widely used in recommendation models to learn feature representations. However, the traditional embedding technique that assigns a fixed size to all categorical features may be suboptimal due to the following reasons. In recommendation domain, the majority of categorical features' embeddings can be trained with less capacity without impacting model performance, thereby storing embeddings with equal length may incur unnecessary memory usage. Existing work that tries to allocate customized sizes for each feature usually either simply scales the embedding size with feature's popularity or formulates this size allocation problem as an architecture selection problem. Unfortunately, most of these methods either have large performance drop or incur significant extra time cost for searching proper embedding sizes. In this article, instead of formulating the size allocation problem as an architecture selection problem, we approach the problem from a pruning perspective and proposePruning-basedMulti-sizeEmbedding (PME) framework. During the search phase, we prune the dimensions that have the least impact on model performance in the embedding to reduce its capacity. Then, we show that the customized size of each token can be obtained by transferring the capacity of its pruned embedding with significant less search cost. Experimental results validate that PME can efficiently find proper sizes and hence achieve strong performance while significantly reducing the number of parameters in the embedding layer.  more » « less
Award ID(s):
1849085
PAR ID:
10499082
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Big Data
Volume:
6
ISSN:
2624-909X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Graph convolutional neural networks (GCNs) embed nodes in a graph into Euclidean space, which has been shown to incur a large distortion when embedding real-world graphs with scale-free or hierarchical structure. Hyperbolic geometry offers an exciting alternative, as it enables embeddings with much smaller distortion. However, extending GCNs to hyperbolic geometry presents several unique challenges because it is not clear how to define neural network operations, such as feature transformation and aggregation, in hyperbolic space. Furthermore, since input features are often Euclidean, it is unclear how to transform the features into hyperbolic embeddings with the right amount of curvature. Here we propose Hyperbolic Graph Convolutional Neural Network (HGCN), the first inductive hyperbolic GCN that leverages both the expressiveness of GCNs and hyperbolic geometry to learn inductive node representations for hierarchical and scale-free graphs. We derive GCNs operations in the hyperboloid model of hyperbolic space and map Euclidean input features to embeddings in hyperbolic spaces with different trainable curvature at each layer. Experiments demonstrate that HGCN learns embeddings that preserve hierarchical structure, and leads to improved performance when compared to Euclidean analogs, even with very low dimensional embeddings: compared to state-of-the-art GCNs, HGCN achieves an error reduction of up to 63.1% in ROC AUC for link prediction and of up to 47.5% in F1 score for node classification, also improving state-of-the art on the PubMed dataset. 
    more » « less
  2. Embeddings, low-dimensional vector representation of objects, are fundamental in building modern machine learning systems. In industrial settings, there is usually an embedding team that trains an embedding model to solve intended tasks (e.g., product recommendation). The produced embeddings are then widely consumed by consumer teams to solve their unintended tasks (e.g., fraud detection). However, as the embedding model gets updated and retrained to improve performance on the intended task, the newly-generated embeddings are no longer compatible with the existing consumer models. This means that historical versions of the embeddings can never be retired or all consumer teams have to retrain their models to make them compatible with the latest version of the embeddings, both of which are extremely costly in practice. Here we study the problem of embedding version updates and their backward compatibility. We formalize the problem where the goal is for the embedding team to keep updating the embedding version, while the consumer teams do not have to retrain their models. We develop a solution based on learning backward compatible embeddings, which allows the embedding model version to be updated frequently, while also allowing the latest version of the embedding to be quickly transformed into any backward compatible historical version of it, so that consumer teams do not have to retrain their models. Our key idea is that whenever a new embedding model is trained, we learn it together with a light-weight backward compatibility transformation that aligns the new embedding to the previous version of it. Our learned backward transformations can then be composed to produce any historical version of embedding. Under our framework, we explore six methods and systematically evaluate them on a real-world recommender system application. We show that the best method, which we call BC-Aligner, maintains backward compatibility with existing unintended tasks even after multiple model version updates. Simultaneously, BC-Aligner achieves the intended task performance similar to the embedding model that is solely optimized for the intended task. 
    more » « less
  3. Taxonomy construction is not only a fundamental task for semantic analysis of text corpora, but also an important step for applications such as information filtering, recommendation, and Web search. Existing pattern-based methods extract hypernym-hyponym term pairs and then organize these pairs into a taxonomy. However, by considering each term as an independent concept node, they overlook the topical proximity and the semantic correlations among terms. In this paper, we propose a method for constructing topic taxonomies, wherein every node represents a conceptual topic and is defined as a cluster of semantically coherent concept terms. Our method, TaxoGen, uses term embeddings and hierarchical clustering to construct a topic taxonomy in a recursive fashion. To ensure the quality of the recursive process, it consists of: (1) an adaptive spherical clustering module for allocating terms to proper levels when splitting a coarse topic into fine-grained ones; (2) a local embedding module for learning term embeddings that maintain strong discriminative power at different levels of the taxonomy. Our experiments on two real datasets demonstrate the effectiveness of TaxoGen compared with baseline methods. 
    more » « less
  4. While most network embedding techniques model the proximity between nodes in a network, recently there has been significant interest in structural embeddings that are based on node equivalences , a notion rooted in sociology: equivalences or positions are collections of nodes that have similar roles—i.e., similar functions, ties or interactions with nodes in other positions—irrespective of their distance or reachability in the network. Unlike the proximity-based methods that are rigorously evaluated in the literature, the evaluation of structural embeddings is less mature. It relies on small synthetic or real networks with labels that are not perfectly defined, and its connection to sociological equivalences has hitherto been vague and tenuous. With new node embedding methods being developed at a breakneck pace, proper evaluation, and systematic characterization of existing approaches will be essential to progress. To fill in this gap, we set out to understand what types of equivalences structural embeddings capture. We are the first to contribute rigorous intrinsic and extrinsic evaluation methodology for structural embeddings, along with carefully-designed, diverse datasets of varying sizes. We observe a number of different evaluation variables that can lead to different results (e.g., choice of similarity measure, classifier, and label definitions). We find that degree distributions within nodes’ local neighborhoods can lead to simple yet effective baselines in their own right and guide the future development of structural embedding. We hope that our findings can influence the design of further node embedding methods and also pave the way for more comprehensive and fair evaluation of structural embedding methods. 
    more » « less
  5. Abstract MotivationModel organisms are widely used to better understand the molecular causes of human disease. While sequence similarity greatly aids this cross-species transfer, sequence similarity does not imply functional similarity, and thus, several current approaches incorporate protein–protein interactions to help map findings between species. Existing transfer methods either formulate the alignment problem as a matching problem which pits network features against known orthology, or more recently, as a joint embedding problem. ResultsWe propose a novel state-of-the-art joint embedding solution: Embeddings to Network Alignment (ETNA). ETNA generates individual network embeddings based on network topological structure and then uses a Natural Language Processing-inspired cross-training approach to align the two embeddings using sequence-based orthologs. The final embedding preserves both within and between species gene functional relationships, and we demonstrate that it captures both pairwise and group functional relevance. In addition, ETNA’s embeddings can be used to transfer genetic interactions across species and identify phenotypic alignments, laying the groundwork for potential opportunities for drug repurposing and translational studies. Availability and implementationhttps://github.com/ylaboratory/ETNA 
    more » « less