Abstract The current paradigm in peatland ecology is that the organic matter inputs from plant photosynthesis (e.g. moss litter) exceed that of decomposition, tipping the metabolic balance in favour of carbon (C) storage. Here, we investigated an alternative hypothesis, whereby exudates released by microalgae can actually accelerate C losses from the surface waters of northern peatlands by stimulating dissolved organic C (DOC) decomposition in a warmer environment expected with climate change. To test this hypothesis, we evaluated the biodegradability of fenDOCin a factorial design with and without algalDOCin both ambient (15°C) and elevated (20°C) water temperatures during a laboratory bioassay.WhenDOCsources were evaluated separately, decomposition rates were higher in treatments with algalDOConly than with fenDOConly, indicating that the quality of the organic matter influenced degradability. A mixture of substrates (½ algalDOC + ½ fenDOC) exceeded the expected level of biodegradation (i.e. the average of the individual substrate responses) by as much as 10%, and the magnitude of this effect increased to more than 15% with warming.Specific ultraviolet absorbance at 254 nm (SUVA254), a proxy for aromatic content, was also significantly higher (i.e. more humic) in the mixture treatment than expected from SUVA254values in single substrate treatments.Accelerated decomposition in the presence of algalDOCwas coupled with an increase in bacterial biomass, demonstrating that enhanced metabolism was associated with a more abundant microbial community.These results present an alternative energy pathway for heterotrophic consumers to breakdown organic matter in northern peatlands. Since decomposition in northern peatlands is often limited by the availability of labile organic matter, this mechanism could become increasingly important as a pathway for decomposition in the surface waters of northern peatlands where algae are expected to be more abundant in conditions associated with ongoing climate change.
more »
« less
Community theory: Testing environmental stress models
Abstract Intensifying climate change and an increasing need for understanding its impacts on ecological communities places new emphasis on testing environmental stress models (ESMs). Using a prior literature search plus references from a more recent search, I evaluated empirical support forESMs, focusing on whether consumer pressure on prey decreased (consumer stress model;CSM) or increased (prey stress model;PSM) with increasing environmental stress. Applying the criterion that testingESMsrequires conducting research at multiple sites along environmental stress gradients, the analysis found thatCSMswere most frequent, with ‘No Effect’ andPSMsoccurring at low but similar frequencies. This result contrasts to a prior survey in which ‘No Effect’ studies were most frequent, thus suggesting that consumers are generally more suppressed by stress than prey. Thus, increased climate change‐induced environmental stress seems likely to reduce, not increase impacts of consumers on prey more often than the reverse
more »
« less
- PAR ID:
- 10499109
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Ecology Letters
- Volume:
- 26
- Issue:
- 8
- ISSN:
- 1461-023X
- Page Range / eLocation ID:
- 1314 to 1324
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Widespread changes in arctic and boreal Normalized Difference Vegetation Index (NDVI) values captured by satellite platforms indicate that northern ecosystems are experiencing rapid ecological change in response to climate warming. Increasing temperatures and altered hydrology are driving shifts in ecosystem biophysical properties that, observed by satellites, manifest as long‐term changes in regionalNDVI. In an effort to examine the underlying ecological drivers of these changes, we used field‐scale remote sensing ofNDVIto track peatland vegetation in experiments that manipulated hydrology, temperature, and carbon dioxide (CO2) levels. In addition toNDVI, we measured percent cover by species and leaf area index (LAI). We monitored two peatland types broadly representative of the boreal region. One site was a rich fen located near Fairbanks, Alaska, at the Alaska Peatland Experiment (APEX), and the second site was a nutrient‐poor bog located in Northern Minnesota within the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment. We found thatNDVIdecreased with long‐term reductions in soil moisture at theAPEXsite, coincident with a decrease in photosynthetic leaf area and the relative abundance of sedges. We observed increasingNDVIwith elevated temperature at theSPRUCEsite, associated with an increase in the relative abundance of shrubs and a decrease in forb cover. Warming treatments at theSPRUCEsite also led to increases in theLAIof the shrub layer. We found no strong effects of elevatedCO2on community composition. Our findings support recent studies suggesting that changes inNDVIobserved from satellite platforms may be the result of changes in community composition and ecosystem structure in response to climate warming.more » « less
-
Abstract Environmental gradients have played a pivotal role in the history and development of plant ecology and are useful for testing ecological and evolutionary theory. Área de Conservación Guanacaste is a spatio‐temporal mosaic of forests that have evolved continuously across elevation, topography, soil types, succession, and annual and inter‐annual climatic change. Studies of plant ecology across diverse gradients ofACGhave shaped functional ecology, successional theory, community assembly, plant–herbivore interactions, among many other fields. In this review, we synthesize the, perhaps overlooked, role plant ecological studies ofACGhave had on our understanding of tropical forest dynamics. We outline present‐day processes that will have major impacts on forest dynamics ofACGin the future and highlight howACGwill continue to shape future research priorities in plant ecology. Abstract in Spanish is available with online material.more » « less
-
PremiseHerbarium specimens have been used to detect climate‐induced shifts in flowering time by using the day of year of collection (DOY) as a proxy for first or peak flowering date. Variation among herbarium sheets in their phenological status, however, undermines the assumption thatDOYaccurately represents any particular phenophase. Ignoring this variation can reduce the explanatory power of pheno‐climatic models (PCMs) designed to predict the effects of climate on flowering date. MethodsHere we present a protocol for the phenological scoring of imaged herbarium specimens using an ImageJ plugin, and we introduce a quantitative metric of a specimen's phenological status, the phenological index (PI), which we use inPCMs to control for phenological variation among specimens ofStreptanthus tortuosus(Brassicaceeae) when testing for the effects of climate onDOY. We demonstrate that includingPIas an independent variable improves model fit. ResultsIncludingPIinPCMs increased the modelR2relative toPCMs that excludedPI; regression coefficients for climatic parameters, however, remained constant. DiscussionOur protocol provides a simple, quantitative phenological metric for any observed plant. IncludingPIinPCMs increasesR2and enables predictions of theDOYof any phenophase under any specified climatic conditions.more » « less
-
ABSTRACT It is unclear how environmental change influences standing genetic variation in wild populations. Here, we characterised environmental conditions that protect versus erode polymorphic chemical defences inBoechera stricta(Brassicaceae), a short‐lived perennial wildflower. By manipulating drought and herbivory in a 4‐year field experiment, we measured the effects of driver variation on vital rates of genotypes varying in defence chemistry and then assessed interacting driver effects on total fitness (estimated as each genotype's lineage growth rate,λ) using demographic models. Drought and herbivory interacted to shape vital rates, but contrasting defence genotypes had equivalent total fitness in many environments. Defence polymorphism thus may persist under a range of conditions; however, ambient field conditions fall close to the boundary of putatively polymorphic environment space, and increasing aridity may drive populations to monomorphism. Consequently, elevated intensity and/or frequency of drought under climate change may erode genetic variation for defence chemistry inB. stricta.more » « less
An official website of the United States government

