A<sc>bstract</sc> We introduce a mechanism by which a misaligned ALP can be dynamically converted into a dark photon in the presence of a background magnetic field. An abundance of non-relativistic ALPs will convert to dark photons with momentum of order the inhomogeneities in the background field; therefore a highly homogeneous field will produce non-relativistic dark photons without relying on any redshifting of their momenta. Taking hidden sector magnetic fields produced by a first order phase transition, the mechanism can reproduce the relic abundance of dark matter for a wide range of dark photon masses down to 10−13eV.
more »
« less
Reflections on bubble walls
A<sc>bstract</sc> We discuss the dynamics of expanding bubble walls in the presence of massive dark photons whose mass changes as they cross the wall. For sufficiently thin walls, we show that there exists a transient kinematic regime characterized by a constant reflection probability of longitudinal — but not transverse — modes. This effect can have important implications for the dynamics of expanding vacuum bubbles in the early Universe. Most notably, it leads to a new source of pressure on the expanding interface, featuring a non-monotonic dependence on theγ-factor of the bubble walls and reaching a peak at intermediateγ-factors that we dub Maximum Dynamic Pressure. When this pressure is large enough to halt the acceleration of the bubble walls, the difference in vacuum energy densities goes into making a fraction of the dark photons relativistic, turning them into dark radiation. If the dark radiation remains relativistic until late times, an observable contribution to ∆Neffis possible for phase transitions with strengthα∼ 10−2−10−1.
more »
« less
- Award ID(s):
- 2207584
- PAR ID:
- 10499748
- Publisher / Repository:
- https://inspirehep.net/
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2023
- Issue:
- 9
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> Ultralight dark matter (ULDM) particles of massmϕ≲ 1 eV can form boson stars in DM halos. Collapse of boson stars leads to explosive bosenova emission of copious relativistic ULDM particles. In this work, we analyze the sensitivity of terrestrial and space-based experiments to detect such relativistic scalar ULDM particles interacting through quadratic couplings with Standard Model constituents, including electrons, photons, and gluons. We highlight key differences with searches for linear ULDM couplings. Screening of ULDM with quadratic couplings near the surface of the Earth can significantly impact observations in terrestrial experiments, motivating future space-based experiments. We demonstrate excellent ULDM discovery prospects, especially for quantum sensors, which can probe quadratic couplings orders below existing constraints by detecting bosenova events in the ULDM mass range 10−23eV ≲mϕ≲ 10−5eV. We also report updated constraints on quadratic couplings of ULDM in case it comprises cold DM.more » « less
-
A<sc>bstract</sc> This paper describes a search for dark photons (γd) in proton-proton collisions at$$ \sqrt{s} $$ = 13 TeV at the Large Hadron Collider (LHC). The dark photons are searched for in the decay of Higgs bosons (H→γγd) produced through theZHproduction mode. The transverse mass of the system, made of the photon and the missing transverse momentum from the non-interactingγd, presents a distinctive signature as it peaks near the Higgs boson mass. The results presented use the total Run-2 integrated luminosity of 139 fb−1recorded by the ATLAS detector at the LHC. The dominant reducible background processes are estimated using data-driven techniques. A Boosted Decision Tree technique is adopted to enhance the sensitivity of the search. As no excess is observed with respect to the Standard Model prediction, an observed (expected) upper limit on the branching ratio BR(H→γγd) of 2.28% ($$ {2.82}_{-0.84}^{+1.33}\% $$ ) is set at 95% CL for masslessγd. For massive dark photons up to 40 GeV, the observed (expected) upper limits on BR(H→γγd) at 95% confidence level is found within the [2.19,2.52]% ([2.71,3.11]%) range.more » « less
-
A<sc>bstract</sc> Cosmology may give rise to appreciable populations of both particle dark matter and primordial black holes (PBH) with the combined mass density providing the observationally inferred value ΩDM≈ 0.26. Early studies highlighted that scenarios with both particle dark matter and PBH are strongly excluded byγ-ray limits for particle dark matter with a velocity independent thermal cross section 〈σν〉 ~ 3 × 10−26cm3/s, as is the case for classic WIMP dark matter. Here we examine the limits from di useγ-rays on velocity-dependent, including annihilations which arep-wave with 〈σν〉 ∝v2ord-wave 〈σν〉 ∝v4, which we find to be considerably less constraining. This work also utilizes a refined treatment of the PBH dark matter density profile. Importantly, we highlight that even if the freeze-out process isp-wave it is typical for (loop/phase-space) suppresseds-wave processes to actually provide the leading contributions to the experimentally constrainedγ-ray flux from the PBH halo.more » « less
-
Abstract We present the results of 3D particle-in-cell simulations that explore relativistic magnetic reconnection in pair plasma with strong synchrotron cooling and a small mass fraction of nonradiating ions. Our results demonstrate that the structure of the current sheet is highly sensitive to the dynamic efficiency of radiative cooling. Specifically, stronger cooling leads to more significant compression of the plasma and magnetic field within the plasmoids. We demonstrate that ions can be efficiently accelerated to energies exceeding the plasma magnetization parameter, ≫σ, and form a hard power-law energy distribution,fi∝γ−1. This conclusion implies a highly efficient proton acceleration in the magnetospheres of young pulsars. Conversely, the energies of pairs are limited to eitherσin the strong cooling regime or the radiation burnoff limit,γsyn, when cooling is weak. We find that the high-energy radiation from pairs above the synchrotron burnoff limit,εc≈ 16 MeV, is only efficiently produced in the strong cooling regime,γsyn<σ. In this regime, we find that the spectral cutoff scales asεcut≈εc(σ/γsyn) and the highest energy photons are beamed along the direction of the upstream magnetic field, consistent with the phenomenological models of gamma-ray emission from young pulsars. Furthermore, our results place constraints on the reconnection-driven models of gamma-ray flares in the Crab Nebula.more » « less
An official website of the United States government

