skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A novel hybrid beachgrass is invading U.S. Pacific Northwest dunes with potential ecosystem consequences
Abstract Invasive plants formed via hybridization, especially those that modify the structure and function of their ecosystems, are of particular concern given the potential for hybrid vigor. In the U.S. Pacific Northwest, two invasive, dune‐building beachgrasses,Ammophila arenaria(European beachgrass) andA. breviligulata(American beachgrass), have hybridized and formed a new beachgrass taxa (Ammophila arenaria × A. breviligulata), but little is known about its distribution, spread, and ecological consequences. Here, we report on surveys of the hybrid beachgrass conducted across a 250‐km range from Moclips, Washington to Pacific City, Oregon, in 2021 and 2022. We detected nearly 300 hybrid individuals, or an average of 8–14 hybrid individuals per km of surveyed foredune. The hybrid was more common at sites within southern Washington and northern Oregon whereA. breviligulatais abundant (75%–90% cover) andA. arenariais sparse and patchy. The hybrid displayed morphological traits such as shoot density and height that typically exceeded its parent species suggesting hybrid vigor. We measured an average growth rate of 30% over one year, with individuals growing faster at the leading edge of the foredune, nearest to the beach. We also found a positive relationship between hybrid abundance andA. arenariaabundance, suggesting thatA. arenariadensity may be a controlling factor for hybridization rate. The hybrid showed similar sand deposition and associated plant species richness patterns compared with its parent species, although longer term studies are needed. Finally, we found hybrid individuals within and near conservation habitat of two Endangered Species Act‐listed, threatened bird species, the western snowy plover (Charadrius alexandrinus nivosus) and the streaked horned lark (Eremophila alpestris strigata), a concern for conservation management. Documenting this emerging hybrid beachgrass provides insights into how hybridization affects the spread of novel species and the consequences for communities in which they invade.  more » « less
Award ID(s):
2103713
PAR ID:
10500215
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecosphere
Volume:
15
Issue:
4
ISSN:
2150-8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The U.S. Pacific Northwest (PWN) coastal dunes are mainly colonized by two non-native beachgrass species (i.e., Ammophila arenaria and A. breviligulata) and a native dune grass (Leymus mollis) that capture sand and build dunes of different morphology. Recently, a hybrid beachgrass was discovered with unknown consequences for dune evolution. We set up a common garden experiment including seven treatments and two control plots to understand the effect of native and non-native plant species on sand accretion and dune morphological evolution. After 1.6 years, sand volume increased the most in the non-native species plots with levels at least twice as high for A. arenaria as compared to the other plots. The hybrid species had moderate sand accretion but a survival rate of 1.4 and 2.1 times higher than its parent species and native species, respectively. These results provide new insights for U.S. PNW coastal dune management. 
    more » « less
  2. The microbial community composition of coastal dunes can vary across environmental gradients, with the potential to impact erosion and deposition processes. In coastal foredunes, invasive plant species establishment can create and alter environmental gradients, thereby altering microbial communities and other ecogeomorphic processes with implications for storm response and management and conservation efforts. However, the mechanisms of these processes are poorly understood. To understand how changing microbial communities can alter these ecogeomorphic dynamics, one must first understand how soil microbial communities vary as a result of invasion. Towards this goal, bacterial communities were assessed spatially along foredune microhabitats, specifically in barren foredune toe and blowout microhabitats and in surrounding vegetated monocultures of native Ammophila breviligulata and invasive Carex kobomugi. Across dune microhabitats, microbial composition was more dissimilar in barren dune toe and blowout microhabitats than among the two plant species, but it did not appear that it would favor the establishment of one plant species over the other. However, the subtle differences between the microbial community composition of two species could ultimately aid in the success of the invasive species by reducing the proportions of bacterial genera associated exclusively with A. breviligulata. These results suggest that arrival time may be crucial in fostering microbiomes that would further the continued establishment and spread of either plant species. 
    more » « less
  3. Vegetation plays a crucial role in coastal dune building. Species‐specific plant characteristics can modulate sediment transport and dune shape, but this factor is absent in most dune building numerical models. Here, we develop a new approach to implement species‐specific vegetation characteristics into a process‐based aeolian sediment transport model. Using a three‐step approach, we incorporated the morphological differences of three dune grass species dominant in the US Pacific Northwest coast (European beachgrassAmmophila arenaria, American beachgrassA. breviligulata, and American dune grassLeymus mollis) into the model AeoLiS. First, we projected the tiller frontal area of each grass species onto a high resolution grid and then re‐scaled the grid to account for the associated vegetation cover for each species. Next, we calibrated the bed shear stress in the numerical model to replicate the actual sand capture efficiency of each species, as measured in a previously published wind tunnel experiment. Simulations were then performed to model sand bedform development within the grass canopies with the same shoot densities for all species and with more realistic average field densities. The species‐specific model shows a significant improvement over the standard model by (a) accurately simulating the sand capture efficiency from the wind tunnel experiment for the grass species and (b) simulating bedform morphology representative of each species' characteristic bedform morphology using realistic field vegetation density. This novel approach to dune modeling will improve spatial and temporal predictions of dune morphologic development and coastal vulnerability under local vegetation conditions and variations in sand delivery. 
    more » « less
  4. Coastal dune restoration often focuses on weed removal to reestablish native vegetation communities. Point Reyes National Seashore (PRNS) initiated large‐scale dune restoration after becoming concerned about loss of dune and rare species habitat from spread of non‐nativeAmmophila arenaria(European beachgrass). Two projects removed beachgrass from 146 ha of heavily invaded dunes using either mechanical removal or herbicide treatment. PRNS conducted pre‐ and post‐restoration vegetation monitoring for 10 years post‐implementation, evaluating success in (1) eradicating beachgrass and (2) reestablishing vegetation communities similar to native dunes in cover, diversity, and species composition. Both methods eradicated beachgrass with annual retreatment. However, they were less successful in rebuilding vegetation communities with comparable native species cover and/or richness. Mechanical removal areas remained largely barren expanses of sand that struggled to support native plants except for a rare perennial, Tidestrom's lupine (Lupinus tidestromii). Tidestrom's lupine and other rare plants now number in the hundreds of thousands. Conversely, herbicide‐treated backdunes were dominated by standing dead beachgrass that resisted decomposition even after 7 years, which hampered native and rare plant establishment. Delayed decomposition was less of an issue in herbicide‐treated foredunes, because sand overwash buried necromass. Restored areas also contended with subsequent invasion by secondary plant invaders. By 2021, only older herbicide‐treated backdunes, and to a lesser extent, mechanical backdunes, showed signs of convergence with native dunes. Successful convergence may be hindered by lingering physical and microbial legacy effects of beachgrass invasion and treatment method. Adaptive restoration may be needed to counter effects and improve project success. 
    more » « less
  5. ABSTRACT Sphingobium sp. strain AEW4 is a novel isolate from rhizosphere soil attached to the root of the American beachgrass Ammophila breviligulata . The genomic sequence consisted of 4,678,518 bp and 4,428 protein-coding sequences. Here we report the draft genome sequence of this strain and some initial insights on its plant growth-promoting capabilities. 
    more » « less