skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Active Control and Gate-Driver Design for Voltage Balancing of Both MOSFETs and Body-Diodes in Series-Connected SiC MOSFETs
Award ID(s):
2143488
PAR ID:
10500288
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
978-1-7281-5135-9
Page Range / eLocation ID:
5393 to 5399
Format(s):
Medium: X
Location:
Vancouver, BC, Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. In this study, we compared the transient self-heating behavior of a homoepitaxial β-Ga2O3 MOSFET and a GaN-on-Si HEMT using nanoparticle-assisted Raman thermometry and thermoreflectance thermal imaging. The effectiveness of bottom-side and double-side cooling schemes using a polycrystalline diamond substrate and a diamond passivation layer were studied via transient thermal modeling. Because of the low thermal diffusivity of β-Ga2O3, the use of a β-Ga2O3 composite substrate (bottom-side cooling) must be augmented by a diamond passivation layer (top-side cooling) to effectively cool the device active region under both steady-state and transient operating conditions. Without no proper cooling applied, the steady-state device-to-package thermal resistance of a homoepitaxial β-Ga2O3 MOSFET is 2.6 times higher than that for a GaN-on-Si HEMT. Replacing the substrate with polycrystalline diamond (under a 6.5 μm-thick β-Ga2O3 layer) could reduce the steady-state temperature rise by 65% compared to that for a homoepitaxial β-Ga2O3 MOSFET. However, for high frequency power switching applications beyond the ~102 kHz range, bottom-side cooling (integration with a high thermal conductivity substrate) does not improve the transient thermal response of the device. Adding a diamond passivation over layer diamond not only suppresses the steadystate temperature rise, but also drastically reduces the transient temperature rise under high frequency operating conditions. 
    more » « less
  2. Ultra-wide band gap semiconductor devices based on β-phase gallium oxide (Ga2O3) offer the potential to achieve higher switching performance and efficiency and lower manufacturing cost than that of today’s wide band gap power electronics. However, the most critical challenge to the commercialization of Ga2O3 electronics is overheating, which impacts the device performance and reliability. We fabricated a Ga2O3/4H–SiC composite wafer using a fusion-bonding method. A low-temperature (≤600 °C) epitaxy and device processing scheme was developed to fabricate MOSFETs on the composite wafer. The low-temperature-grown epitaxial Ga2O3 devices deliver high thermal performance (56% reduction in channel temperature) and a power figure of merit of (∼300 MW/cm2), which is the highest among heterogeneously integrated Ga2O3 devices reported to date. Simulations calibrated based on thermal characterization results of the Ga2O3-on-SiC MOSFET reveal that a Ga2O3/diamond composite wafer with a reduced Ga2O3 thickness (∼1 μm) and a thinner bonding interlayer (<10 nm) can reduce the device thermal impedance to a level lower than that of today’s GaN-on-SiC power switches. 
    more » « less
  3. Narrow-channel accumulated body nMOSFET devices with p-type side gates surrounding the active area have been electrically characterized between 100 and 400 K with varied side-gate biasing ( Vside ). The subthreshold slope (SS) and drain induced barrier lowering (DIBL) decrease and threshold voltage ( Vt ) increases linearly with reduced temperature and reduced side-gate bias. Detailed analysis on a 27 nm × 78 nm (width × length) device shows SS decreasing from 115 mV/dec at 400 K to 90 mV/dec at 300 K and down to 36 mV/dec at 100 K, DIBL decreasing by approximately 10 mV/V for each 100 K reduction in operating temperature, and Vt increasing from 0.42 to 0.61 V as the temperature is reduced from 400 to 100 K. Vt can be adjusted from ∼ 0.3 to ∼ 1.1 V with ∼ 0.3 V/V sensitivity by depletion or accumulation of the body of the device using Vside . This high level of tunability allows electronic control of Vt and drive current for variable temperature operation in a wide temperature range with extremely low leakage currents ( < 10 −13 A). 
    more » « less