Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Due to its fast switching speed, the voltage sharing of series-connected SiC MOSFETs is more sensitive to the parasitic components from the power modules and the system, which results in more challenges for voltage balancing control. For two series-connected SiC MOSFETs realized by one half-bridge module, the detailed analysis and measurement indicate that the unbalanced parasitic capacitors inside the power module comprise the dominant factor causing the difference of turn-off dv/dt. In this paper, the traditional gate turn-off delay-time control is first used as an example to analyze the limitation of the existing active voltage balancing (AVB) control methods under AC load current: 1) AVB control has a limitation to adjust delay time accurately under AC current; 2) the voltage imbalance of the body diodes cannot be solved by AVB control. To achieve voltage balancing control of series-connected SiC MOSFETs and body diodes, this paper proposes a new two-part hybrid approach: 1) passive dv/dt compensation: one small compensation capacitor is applied to balance the non-uniform distribution of parasitic capacitors inside the power module, so the series-connected MOSFETs can have the same turn-off dv/dt; 2) active gate signal turn-off time adjustment: a closed-loop delay time control is applied to compensate the gate signal mismatch of MOSFETs. To verify the proposed balancing approach, a single-phase pump-back test is conducted to show the improvement of voltage sharing of both MOSFETs and body diodes.more » « less
An official website of the United States government
