skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hyper‐Elastic Deformation via Martensitic Phase Transformation in Cadmium Telluride
Cadmium telluride (CdTe) is a highly promising material for photovoltaics (PV) and photodetectors due to its light‐absorbing properties. However, efficient design and use of flexible devices require a deep understanding of its atomic‐level deformation mechanism. Herein, uniaxial compression deformation of CdTe monocrystalline with varying crystal orientations is investigated using molecular dynamics (MD) with a newly developed machine‐learning force field (ML‐FF), alongside in‐situ micropillar compression experiments. The findings reveal that CdTe bulk deformation is dominated by reversible martensitic phase transformation, whereas CdTe pillar deformation is primarily driven by dislocation nucleation and movement. CdTe monocrystals possess exceptional super‐recoverable deformation along the <100> orientation due to hyper‐elastic processes induced by martensitic transformation. This discovery not only sheds light on the peculiarities observed in micropillar experimental measurements, but also provides pivotal insights into the fundamental deformation behaviors of CdTe and similar II–VI compounds under various stress conditions. These insights are crucial for the innovative design and enhanced functionality of future flexible electronic devices.  more » « less
Award ID(s):
2330728
PAR ID:
10500327
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Engineering Materials
Volume:
26
Issue:
16
ISSN:
1438-1656
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The individual effects of strain rate and temperature on the strain hardening rate of a quenched and partitioned steel have been examined. During quasistatic tests, resistive heating was used to simulate the deformation-induced heating that occurs during high-strain-rate deformation, while the deformation-induced martensitic transformation was tracked by a combination of x-ray and electron backscatter diffraction. Unique work hardening rates under various thermal–mechanical conditions are discussed, based on the balance between the concurrent dislocation slip and transformation-induced plasticity deformation mechanisms. The diffraction and strain hardening data suggest that the imposed strain rate and temperature exhibited dissonant influences on the martensitic phase transformation. Increasing the strain rate appeared to enhance the martensitic transformation, while increasing the temperature suppressed the martensitic transformation. 
    more » « less
  2. SUMMARY Low-temperature plastic rheology of calcite plays a significant role in the dynamics of Earth's crust. However, it is technically challenging to study plastic rheology at low temperatures because of the high confining pressures required to inhibit fracturing. Micromechanical tests, such as nanoindentation and micropillar compression, can provide insight into plastic rheology under these conditions because, due to the small scale, plastic deformation can be achieved at low temperatures without the need for secondary confinement. In this study, nanoindentation and micropillar compression experiments were performed on oriented grains within a polycrystalline sample of Carrara marble at temperatures ranging from 23 to 175 °C, using a nanoindenter. Indentation hardness is acquired directly from nanoindentation experiments. These data are then used to calculate yield stress as a function of temperature using numerical approaches that model the stress state under the indenter. Indentation data are complemented by uniaxial micropillar compression experiments. Cylindrical micropillars ∼1 and ∼3 μm in diameter were fabricated using a focused ion beam-based micromachining technique. Yield stress in micropillar experiments is determined directly from the applied load and micropillar dimensions. Mechanical data are fit to constitutive flow laws for low-temperature plasticity and compared to extrapolations of similar flow laws from high-temperature experiments. This study also considered the effects of crystallographic orientation on yield stress in calcite. Although there is a clear orientation dependence to plastic yielding, this effect is relatively small in comparison to the influence of temperature. 
    more » « less
  3. null (Ed.)
    Abstract Extreme shear deformation is used for several material processing methods and is unavoidable in many engineering applications in which two surfaces are in relative motion against each other while in physical contact. The mechanistic understanding of the microstructural evolution of multi-phase metallic alloys under extreme shear deformation is still in its infancy. Here, we highlight the influence of shear deformation on the microstructural hierarchy and mechanical properties of a binary as-cast Al-4 at.% Si alloy. Shear-deformation-induced grain refinement, multiscale fragmentation of the eutectic Si-lamellae, and metastable solute saturated phases with distinctive defect structures led to a two-fold increase in the flow stresses determined by micropillar compression testing. These results highlight that shear deformation can achieve non-equilibrium microstructures with enhanced mechanical properties in Al–Si alloys. The experimental and computational insights obtained here are especially crucial for developing predictive models for microstructural evolution of metals under extreme shear deformation. 
    more » « less
  4. Abstract Single point incremental forming (SPIF) is a flexible manufacturing process that has applications in industries ranging from biomedical to automotive. In addition to rapid prototyping, which requires easy adaptations in geometry or material for design changes, control of the final part properties is desired. One strategy that can be implemented is stress superposition, which is the application of additional stresses during an existing manufacturing process. Tensile and compressive stresses applied during SPIF showed significant effects on the resulting microstructure in stainless steel 304 truncated square pyramids. Specifically, the amount of martensitic transformation was increased through stress superposed incremental forming. Finite element analyses with advanced material modeling supported that the stress triaxiality had a larger effect than the Lode angle parameter on the phase transformation that occurred during deformation. By controlling the amount of tensile and compressive stresses superposed during incremental forming, the microstructure of the final component can be manipulated based on the intended application and desired final part properties. 
    more » « less
  5. Abstract Light-weight, high-strength, aluminum (Al) alloys have widespread industrial applications. However, most commercially available high-strength Al alloys, like AA 7075, are not suitable for additive manufacturing due to their high susceptibility to solidification cracking. In this work, a custom Al alloy Al92Ti2Fe2Co2Ni2is fabricated by selective laser melting. Heterogeneous nanoscale medium-entropy intermetallic lamella form in the as-printed Al alloy. Macroscale compression tests reveal a combination of high strength, over 700 MPa, and prominent plastic deformability. Micropillar compression tests display significant back stress in all regions, and certain regions have flow stresses exceeding 900 MPa. Post-deformation analyses reveal that, in addition to abundant dislocation activities in Al matrix, complex dislocation structures and stacking faults form in monoclinic Al9Co2type brittle intermetallics. This study shows that proper introduction of heterogeneous microstructures and nanoscale medium entropy intermetallics offer an alternative solution to the design of ultrastrong, deformable Al alloys via additive manufacturing. 
    more » « less