skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sample-Path Large Deviations for Unbounded Additive Functionals of the Reflected Random Walk
We prove a sample-path large deviation principle (LDP) with sublinear speed for unbounded functionals of certain Markov chains induced by the Lindley recursion. The LDP holds in the Skorokhod space [Formula: see text] equipped with the [Formula: see text] topology. Our technique hinges on a suitable decomposition of the Markov chain in terms of regeneration cycles. Each regeneration cycle denotes the area accumulated during the busy period of the reflected random walk. We prove a large deviation principle for the area under the busy period of the Markov random walk, and we show that it exhibits a heavy-tailed behavior. Funding: The research of B. Zwart and M. Bazhba is supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek [Grant 639.033.413]. The research of J. Blanchet is supported by the National Science Foundation (NSF) [Grants 1915967, 1820942, and 1838576] as well as the Defense Advanced Research Projects Agency [Grant N660011824028]. The research of C.-H. Rhee is supported by the NSF [Grant CMMI-2146530].  more » « less
Award ID(s):
2146530
PAR ID:
10500346
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
INFORMS
Date Published:
Journal Name:
Mathematics of Operations Research
ISSN:
0364-765X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we study the generalized subdifferentials and the Riemannian gradient subconsistency that are the basis for non-Lipschitz optimization on embedded submanifolds of [Formula: see text]. We then propose a Riemannian smoothing steepest descent method for non-Lipschitz optimization on complete embedded submanifolds of [Formula: see text]. We prove that any accumulation point of the sequence generated by the Riemannian smoothing steepest descent method is a stationary point associated with the smoothing function employed in the method, which is necessary for the local optimality of the original non-Lipschitz problem. We also prove that any accumulation point of the sequence generated by our method that satisfies the Riemannian gradient subconsistency is a limiting stationary point of the original non-Lipschitz problem. Numerical experiments are conducted to demonstrate the advantages of Riemannian [Formula: see text] [Formula: see text] optimization over Riemannian [Formula: see text] optimization for finding sparse solutions and the effectiveness of the proposed method. Funding: C. Zhang was supported in part by the National Natural Science Foundation of China [Grant 12171027] and the Natural Science Foundation of Beijing [Grant 1202021]. X. Chen was supported in part by the Hong Kong Research Council [Grant PolyU15300219]. S. Ma was supported in part by the National Science Foundation [Grants DMS-2243650 and CCF-2308597], the UC Davis Center for Data Science and Artificial Intelligence Research Innovative Data Science Seed Funding Program, and a startup fund from Rice University. 
    more » « less
  2. In this paper, we propose a new algorithm for solving convex-concave saddle-point problems using regret minimization in the repeated game framework. To do so, we introduce the Conic Blackwell Algorithm + ([Formula: see text]), a new parameter- and scale-free regret minimizer for general convex compact sets. [Formula: see text] is based on Blackwell approachability and attains [Formula: see text] regret. We show how to efficiently instantiate [Formula: see text] for many decision sets of interest, including the simplex, [Formula: see text] norm balls, and ellipsoidal confidence regions in the simplex. Based on [Formula: see text], we introduce [Formula: see text], a new parameter-free algorithm for solving convex-concave saddle-point problems achieving a [Formula: see text] ergodic convergence rate. In our simulations, we demonstrate the wide applicability of [Formula: see text] on several standard saddle-point problems from the optimization and operations research literature, including matrix games, extensive-form games, distributionally robust logistic regression, and Markov decision processes. In each setting, [Formula: see text] achieves state-of-the-art numerical performance and outperforms classical methods, without the need for any choice of step sizes or other algorithmic parameters. Funding: J. Grand-Clément is supported by the Agence Nationale de la Recherche [Grant 11-LABX-0047] and by Hi! Paris. C. Kroer is supported by the Office of Naval Research [Grant N00014-22-1-2530] and by the National Science Foundation [Grant IIS-2147361]. 
    more » « less
  3. Let ρ be a general law-invariant convex risk measure, for instance, the average value at risk, and let X be a financial loss, that is, a real random variable. In practice, either the true distribution μ of X is unknown, or the numerical computation of [Formula: see text] is not possible. In both cases, either relying on historical data or using a Monte Carlo approach, one can resort to an independent and identically distributed sample of μ to approximate [Formula: see text] by the finite sample estimator [Formula: see text] (μNdenotes the empirical measure of μ). In this article, we investigate convergence rates of [Formula: see text] to [Formula: see text]. We provide nonasymptotic convergence rates for both the deviation probability and the expectation of the estimation error. The sharpness of these convergence rates is analyzed. Our framework further allows for hedging, and the convergence rates we obtain depend on neither the dimension of the underlying assets nor the number of options available for trading. Funding: Daniel Bartl is grateful for financial support through the Vienna Science and Technology Fund [Grant MA16-021] and the Austrian Science Fund [Grants ESP-31 and P34743]. Ludovic Tangpi is supported by the National Science Foundation [Grant DMS-2005832] and CAREER award [Grant DMS-2143861]. 
    more » « less
  4. The 𝑊 -random graphs provide a flexible framework for modeling large random networks. Using the Large Deviation Principle (LDP) for 𝑊 -random graphs from [19], we prove the LDP for the corresponding class of random symmetric Hilbert-Schmidt integral operators. Our main result describes how the eigenvalues and the eigenspaces of the integral operator are affected by large deviations in the underlying random graphon. To prove the LDP, we demonstrate continuous dependence of the spectral measures associated with integral operators on the corresponding graphons and use the Contraction Principle. To illustrate our results, we obtain leading order asymptotics of the eigenvalues of small-world and bipartite random graphs conditioned on atypical edge counts. These examples suggest several representative scenarios of how the eigenvalues and the eigenspaces are affected by large deviations. We discuss the implications of these observations for bifurcation analysis of Dynamical Systems and Graph Signal Processing. 
    more » « less
  5. In recent decades, the advance of information technology and abundant personal data facilitate the application of algorithmic personalized pricing. However, this leads to the growing concern of potential violation of privacy because of adversarial attack. To address the privacy issue, this paper studies a dynamic personalized pricing problem with unknown nonparametric demand models under data privacy protection. Two concepts of data privacy, which have been widely applied in practices, are introduced: central differential privacy (CDP) and local differential privacy (LDP), which is proved to be stronger than CDP in many cases. We develop two algorithms that make pricing decisions and learn the unknown demand on the fly while satisfying the CDP and LDP guarantee, respectively. In particular, for the algorithm with CDP guarantee, the regret is proved to be at most [Formula: see text]. Here, the parameter T denotes the length of the time horizon, d is the dimension of the personalized information vector, and the key parameter [Formula: see text] measures the strength of privacy (smaller ε indicates a stronger privacy protection). Conversely, for the algorithm with LDP guarantee, its regret is proved to be at most [Formula: see text], which is near optimal as we prove a lower bound of [Formula: see text] for any algorithm with LDP guarantee. 
    more » « less