The densest subgraph problem in a graph (\dsg), in the simplest form, is the following. Given an undirected graph $G=(V,E)$ find a subset $$S \subseteq V$$ of vertices that maximizes the ratio $|E(S)|/|S|$ where $E(S)$ is the set of edges with both endpoints in $$S$$. \dsg and several of its variants are well-studied in theory and practice and have many applications in data mining and network analysis. In this paper we study fast algorithms and structural aspects of \dsg via the lens of \emph{supermodularity}. For this we consider the densest supermodular subset problem (\dssp): given a non-negative supermodular function $$f: 2^V \rightarrow \mathbb{R}_+$, maximize $f(S)/|S|$$. For \dsg we describe a simple flow-based algorithm that outputs a $$(1-\eps)$-approximation in deterministic $$\tilde{O}(m/\eps)$$ time where $$m$$ is the number of edges. Our algorithm is the first to have a near-linear dependence on $$m$$ and $$1/\eps$$ and improves previous methods based on an LP relaxation. It generalizes to hypergraphs, and also yields a faster algorithm for directed \dsg. Greedy peeling algorithms have been very popular for \dsg and several variants due to their efficiency, empirical performance, and worst-case approximation guarantees. We describe a simple peeling algorithm for \dssp and analyze its approximation guarantee in a fashion that unifies several existing results. Boob et al.\ \cite{bgpstww-20} developed an \emph{iterative} peeling algorithm for \dsg which appears to work very well in practice, and made a conjecture about its convergence to optimality. We affirmatively answer their conjecture, and in fact prove that a natural generalization of their algorithm converges to a $$(1-\eps)$$-approximation for \emph{any} supermodular function $$f$$; the key to our proof is to consider an LP formulation that is derived via the \Lovasz extension of a supermodular function. For \dsg the bound on the number of iterations we prove is $$O(\frac{\Delta \ln |V|}{\lambda^*}\cdot \frac{1}{\eps^2})$ where $$\Delta$$ is the maximum degree and $$\lambda^*$$ is the optimum value. Our work suggests that iterative peeling can be an effective heuristic for several objectives considered in the literature. Finally, we show that the $$2$$-approximation for densest-at-least-$$k$$ subgraph \cite{ks-09} extends to the supermodular setting. We also give a unified analysis of the peeling algorithm for this problem, and via this analysis derive an approximation guarantee for a generalization of \dssp to maximize $$f(S)/g(|S|)$ for a concave function $$g$$.
more »
« less
Convergence to Lexicographically Optimal Base in a (Contra)Polymatroid and Applications to Densest Subgraph and Tree Packing
Boob et al. [Boob et al., 2020] described an iterative peeling algorithm called Greedy++ for the Densest Subgraph Problem (DSG) and conjectured that it converges to an optimum solution. Chekuri, Qaunrud and Torres [Chandra Chekuri et al., 2022] extended the algorithm to supermodular density problems (of which DSG is a special case) and proved that the resulting algorithm Super-Greedy++ (and hence also Greedy++) converges. In this paper we revisit the convergence proof and provide a different perspective. This is done via a connection to Fujishige’s quadratic program for finding a lexicographically optimal base in a (contra) polymatroid [Satoru Fujishige, 1980], and a noisy version of the Frank-Wolfe method from convex optimization [Frank and Wolfe, 1956; Jaggi, 2013]. This yields a simpler convergence proof, and also shows a stronger property that Super-Greedy++ converges to the optimal dense decomposition vector, answering a question raised in Harb et al. [Harb et al., 2022]. A second contribution of the paper is to understand Thorup’s work on ideal tree packing and greedy tree packing [Thorup, 2007; Thorup, 2008] via the Frank-Wolfe algorithm applied to find a lexicographically optimum base in the graphic matroid. This yields a simpler and transparent proof. The two results appear disparate but are unified via Fujishige’s result and convex optimization.
more »
« less
- Award ID(s):
- 2129816
- PAR ID:
- 10500362
- Editor(s):
- Gørtz, Inge Li; Farach-Colton, Martin; Puglisi, Simon J.; Herman, Grzegorz
- Publisher / Repository:
- Schloss Dagstuhl – Leibniz-Zentrum für Informatik
- Date Published:
- Journal Name:
- 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands
- Subject(s) / Keyword(s):
- Polymatroid lexicographically optimum base densest subgraph tree packing Networks → Network algorithms Mathematics of computing → Graph algorithms
- Format(s):
- Medium: X
- Location:
- Amsterdam, The Netherlands
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the densest subgraph problem and give algorithms via multiplicative weights update and area convexity that converge in $$O\left(\frac{\log m}{\epsilon^{2}}\right)$$ and $$O\left(\frac{\log m}{\epsilon}\right)$$ iterations, respectively, both with nearly-linear time per iteration. Compared with the work by Bahmani et al. (2014), our MWU algorithm uses a very different and much simpler procedure for recovering the dense subgraph from the fractional solution and does not employ a binary search. Compared with the work by Boob et al. (2019), our algorithm via area convexity improves the iteration complexity by a factor $$\Delta$$ — the maximum degree in the graph, and matches the fastest theoretical runtime currently known via flows (Chekuri et al., 2022) in total time. Next, we study the dense subgraph decomposition problem and give the first practical iterative algorithm with linear convergence rate $$O\left(mn\log\frac{1}{\epsilon}\right)$$ via accelerated random coordinate descent. This significantly improves over $$O\left(\frac{m\sqrt{mn\Delta}}{\epsilon}\right)$$ time of the FISTA-based algorithm by Harb et al. (2022). In the high precision regime $$\epsilon\ll\frac{1}{n}$$ where we can even recover the exact solution, our algorithm has a total runtime of $$O\left(mn\log n\right)$$, matching the state of the art exact algorithm via parametric flows (Gallo et al., 1989). Empirically, we show that this algorithm is very practical and scales to very large graphs, and its performance is competitive with widely used methods that have significantly weaker theoretical guarantees.more » « less
-
null (Ed.)Recently decentralized optimization attracts much attention in machine learning because it is more communication-efficient than the centralized fashion. Quantization is a promising method to reduce the communication cost via cutting down the budget of each single communication using the gradient compression. To further improve the communication efficiency, more recently, some quantized decentralized algorithms have been studied. However, the quantized decentralized algorithm for nonconvex constrained machine learning problems is still limited. Frank-Wolfe (a.k.a., conditional gradient or projection-free) method is very efficient to solve many constrained optimization tasks, such as low-rank or sparsity-constrained models training. In this paper, to fill the gap of decentralized quantized constrained optimization, we propose a novel communication-efficient Decentralized Quantized Stochastic Frank-Wolfe (DQSFW) algorithm for non-convex constrained learning models. We first design a new counterexample to show that the vanilla decentralized quantized stochastic Frank-Wolfe algorithm usually diverges. Thus, we propose DQSFW algorithm with the gradient tracking technique to guarantee the method will converge to the stationary point of non-convex optimization safely. In our theoretical analysis, we prove that to achieve the stationary point our DQSFW algorithm achieves the same gradient complexity as the standard stochastic Frank-Wolfe and centralized Frank-Wolfe algorithms, but has much less communication cost. Experiments on matrix completion and model compression applications demonstrate the efficiency of our new algorithm.more » « less
-
Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)The splitting-off operation in undirected graphs is a fundamental reduction operation that detaches all edges incident to a given vertex and adds new edges between the neighbors of that vertex while preserving their degrees. Lovász [Lov{á}sz, 1974; Lov{á}sz, 1993] and Mader [Mader, 1978] showed the existence of this operation while preserving global and local connectivities respectively in graphs under certain conditions. These results have far-reaching applications in graph algorithms literature [Lovász, 1976; Mader, 1978; Frank, 1993; Frank and Király, 2002; Király and Lau, 2008; Frank, 1992; Goemans and Bertsimas, 1993; Frank, 1994; Bang-Jensen et al., 1995; Frank, 2011; Nagamochi and Ibaraki, 2008; Nagamochi et al., 1997; Henzinger and Williamson, 1996; Goemans, 2001; Jordán, 2003; Kriesell, 2003; Jain et al., 2003; Chan et al., 2011; Bhalgat et al., 2008; Lau, 2007; Chekuri and Shepherd, 2008; Nägele and Zenklusen, 2020; Blauth and Nägele, 2023]. In this work, we introduce a splitting-off operation in hypergraphs. We show that there exists a local connectivity preserving complete splitting-off in hypergraphs and give a strongly polynomial-time algorithm to compute it in weighted hypergraphs. We illustrate the usefulness of our splitting-off operation in hypergraphs by showing two applications: (1) we give a constructive characterization of k-hyperedge-connected hypergraphs and (2) we give an alternate proof of an approximate min-max relation for max Steiner rooted-connected orientation of graphs and hypergraphs (due to Király and Lau [Király and Lau, 2008]). Our proof of the approximate min-max relation for graphs circumvents the Nash-Williams' strong orientation theorem and uses tools developed for hypergraphs.more » « less
-
Guruswami, Venkatesan (Ed.)We provide a simple (1-O(1/(√{k)}))-selectable Online Contention Resolution Scheme for k-uniform matroids against a fixed-order adversary. If A_i and G_i denote the set of selected elements and the set of realized active elements among the first i (respectively), our algorithm selects with probability 1-1/(√{k)} any active element i such that |A_{i-1}| + 1 ≤ (1-1/(√{k)})⋅ 𝔼[|G_i|]+√k. This implies a (1-O(1/(√{k)})) prophet inequality against fixed-order adversaries for k-uniform matroids that is considerably simpler than previous algorithms [Alaei, 2014; Azar et al., 2014; Jiang et al., 2022]. We also prove that no OCRS can be (1-Ω(√{(log k)/k}))-selectable for k-uniform matroids against an almighty adversary. This guarantee is matched by the (known) simple greedy algorithm that selects every active element with probability 1-Θ(√{(log k)/k}) [Hajiaghayi et al., 2007].more » « less
An official website of the United States government

