Abstract Ferrimagnetic materials combine the advantages of the low magnetic moment of an antiferromagnet and the ease of realizing magnetic reading of a ferromagnet. Recently, it was demonstrated that compensated ferrimagnetic half metals can be realized in Heusler alloys, where high spin polarization, zero magnetic moment, and low magnetic damping can be achieved at the same time. In this work, by studying the spin–orbit torque induced switching in the Heusler alloy Mn2Ru1−xGa, it is found that efficient current‐induced magnetic switching can be realized in a nearly compensated sample with strong perpendicular anisotropy and large film thickness. This work demonstrates the possibility of employing compensated Heusler alloys for fast, energy‐efficient spintronic devices. 
                        more » 
                        « less   
                    
                            
                            Ionically driven synthesis and exchange bias in Mn4N/MnN x heterostructures
                        
                    
    
            Ferrimagnets have received renewed attention as a promising platform for spintronic applications. Of particular interest is the Mn4N from the ε-phase of the manganese nitride as an emergent rare-earth-free spintronic material due to its perpendicular magnetic anisotropy, small saturation magnetization, high thermal stability, and large domain wall velocity. We have achieved high-quality (001)-ordered Mn4N thin film by sputtering Mn onto η-phase Mn3N2 seed layers on Si substrates. As the deposited Mn thickness varies, nitrogen ion migration across the Mn3N2/Mn layers leads to a continuous evolution of the layers to Mn3N2/Mn2N/Mn4N, Mn2N/Mn4N, and eventually Mn4N alone. The ferrimagnetic Mn4N, indeed, exhibits perpendicular magnetic anisotropy and forms via a nucleation-and-growth mechanism. The nitrogen ion migration is also manifested in a significant exchange bias, up to 0.3 T at 5 K, due to the interactions between ferrimagnetic Mn4N and antiferromagnetic Mn3N2 and Mn2N. These results demonstrate a promising all-nitride magneto-ionic platform with remarkable tunability for device applications. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10500735
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 123
- Issue:
- 8
- ISSN:
- 0003-6951
- Page Range / eLocation ID:
- 082403
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Nb and its compounds are widely used in quantum computing due to their high superconducting transition temperatures and high critical fields. Devices that combine superconducting performance and spintronic non-volatility could deliver unique functionality. Here we report the study of magnetic tunnel junctions with Nb as the heavy metal layers. An interfacial perpendicular magnetic anisotropy energy density of 1.85 mJ/m2was obtained in Nb/CoFeB/MgO heterostructures. The tunneling magnetoresistance was evaluated in junctions with different thickness combinations and different annealing conditions. An optimized magnetoresistance of 120% was obtained at room temperature, with a damping parameter of 0.011 determined by ferromagnetic resonance. In addition, spin-transfer torque switching has also been successfully observed in these junctions with a quasistatic switching current density of 7.3$$\times \;10^{5}$$ A/cm2.more » « less
- 
            Efficient manipulation of antiferromagnetically coupled materials that are integration-friendly and have strong perpendicular magnetic anisotropy (PMA) is of great interest for low-power, fast, dense magnetic storage and computing. Here, we report a distinct, giant bulk damping-like spin–orbit torque in strong-PMA ferrimagnetic Fe 100− x Tb x single layers that are integration-friendly (composition-uniform, amorphous, and sputter-deposited). For sufficiently thick layers, this bulk torque is constant in the efficiency per unit layer thickness, [Formula: see text]/ t, with a record-high value of 0.036 ± 0.008 nm −1 , and the damping-like torque efficiency [Formula: see text] achieves very large values for thick layers, up to 300% for 90 nm layers. This giant bulk torque by itself switches tens of nm thick Fe 100− x Tb x layers that have very strong PMA and high coercivity at current densities as low as a few MA/cm 2 . Surprisingly, for a given layer thickness, [Formula: see text] shows strong composition dependence and becomes negative for composition where the total angular momentum is oriented parallel to the magnetization rather than antiparallel. Our findings of giant bulk spin torque efficiency and intriguing torque-compensation correlation will stimulate study of such unique spin–orbit phenomena in a variety of ferrimagnetic hosts. This work paves a promising avenue for developing ultralow-power, fast, dense ferrimagnetic storage and computing devices.more » « less
- 
            Abstract Rare‐earth iron garnets (REIG) have recently become the materials platform of choice for spintronic studies on ferrimagnetic insulators. However, thus far the materials studied have mainly been REIG with a single rare earth species such as thulium, yttrium, or terbium iron garnets. In this study, magnetometry, ferromagnetic resonance, and magneto‐optical Kerr effect imaging is used to explore the continuous variation of magnetic properties as a function of composition for YxTm3−xiron garnet (YxTm3−xIG) thin films grown by pulsed laser deposition on gadolinium gallium garnet substrates. It is reported that the tunability of the magnetic anisotropy energy, with full control achieved over the type of anisotropy (from perpendicular, to isotropic, to an in‐plane easy axis) on the same substrate. In addition, a nonmonotonic composition‐dependent anisotropy term is reported, which is ascribed to growth‐induced anisotropy similar to what is reported in garnet thin films grown by liquid‐phase epitaxy. Ferromagnetic resonance shows linear variation of the damping and the g‐factor across the composition range, consistent with prior theoretical work. Domain imaging reveals differences in reversal modes, remanant states, and domain sizes in YxTm3−xiron‐garnet thin films as a function of anisotropy.more » « less
- 
            Abstract The increasing energy demand in information technologies requires novel low‐power procedures to store and process data. Magnetic materials, central to these technologies, are usually controlled through magnetic fields or spin‐polarized currents that are prone to the Joule heating effect. Magneto‐ionics is a unique energy‐efficient strategy to control magnetism that can induce large non‐volatile modulation of magnetization, coercivity and other properties through voltage‐driven ionic motion. Recent studies have shown promising magneto‐ionic effects using nitrogen ions. However, either liquid electrolytes or prior annealing procedures are necessary to induce the desired N‐ion motion. In this work, magneto‐ionic effects are voltage‐triggered at room temperature in solid state systems of CoxMn1‐xN films, without the need of thermal annealing. Upon gating, a rearrangement of nitrogen ions in the layers is observed, leading to changes in the co‐existing ferromagnetic and antiferromagnetic phases, which result in substantial increase of magnetization at room temperature and modulation of the exchange bias effect at low temperatures. A detailed correlation between the structural and magnetic evolution of the system upon voltage actuation is provided. The obtained results offer promising new avenues for the utilization of nitride compounds in energy‐efficient spintronic and other memory devices.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    