Federated learning (FL) is an efficient learning framework that assists distributed machine learning when data cannot be shared with a centralized server. Recent advancements in FL use predefined architecture-based learning for all clients. However, given that clients’ data are invisible to the server and data distributions are non-identical across clients, a predefined architecture discovered in a centralized setting may not be an optimal solution for all the clients in FL. Motivated by this challenge, we introduce SPIDER, an algorithmic frame- work that aims to Search PersonalIzed neural architecture for feDERated learning. SPIDER is designed based on two unique features: (1) alternately optimizing one architecture- homogeneous global model in a generic FL manner and architecture-heterogeneous local models that are connected to the global model by weight-sharing-based regularization, (2) achieving architecture-heterogeneous local models by a perturbation-based neural architecture search method. Experimental results demonstrate superior prediction performance compared with other state-of-the-art personalization methods. Code is available at https://github.com/ErumMushtaq/SPIDER.git.
more »
« less
Driver Maneuver Interaction Identification with Anomaly-Aware Federated Learning on Heterogeneous Feature Representations
Driver maneuver interaction learning (DMIL) refers to the classification task with the goal of identifying different driver-vehicle maneuver interactions (e.g., left/right turns). Existing conventional studies largely focused on the centralized collection of sensor data from the drivers' smartphones (say, inertial measurement units or IMUs, like accelerometer and gyroscope). Such a centralized mechanism might be precluded by data regulatory constraints. Furthermore, how to enable an adaptive and accurate DMIL framework remains challenging due to (i) complexity in heterogeneous driver maneuver patterns, and (ii) impacts of anomalous driver maneuvers due to, for instance, aggressive driving styles and behaviors. To overcome the above challenges, we propose AF-DMIL, an Anomaly-aware Federated Driver Maneuver Interaction Learning system. We focus on the real-world IMU sensor datasets (e.g., collected by smartphones) for our pilot case study. In particular, we have designed three heterogeneous representations for AF-DMIL regarding spectral, time series, and statistical features that are derived from the IMU sensor readings. We have designed a novel heterogeneous representation attention network (HetRANet) based on spectral channel attention, temporal sequence attention, and statistical feature learning mechanisms, jointly capturing and identifying the complex patterns within driver maneuver behaviors. Furthermore, we have designed a densely-connected convolutional neural network in HetRANet to enable the complex feature extraction and enhance the computational efficiency of HetRANet. In addition, we have designed within AF-DMIL a novel anomaly-aware federated learning approach for decentralized DMIL in response to anomalous maneuver data. To ease extraction of the maneuver patterns and evaluation of their mutual differences, we have designed an embedding projection network that projects the high-dimensional driver maneuver features into low-dimensional space, and further derives the exemplars that represent the driver maneuver patterns for mutual comparison. Then, AF-DMIL further leverages the mutual differences of the exemplars to identify those that exhibit anomalous patterns and deviate from others, and mitigates their impacts upon the federated DMIL. We have conducted extensive driver data analytics and experimental studies on three real-world datasets (one is harvested on our own) to evaluate the prototype of AF-DMIL, demonstrating AF-DMIL's accuracy and effectiveness compared to the state-of-the-art DMIL baselines (on average by more than 13% improvement in terms of DMIL accuracy), as well as fewer communication rounds (on average 29.20% fewer than existing distributed learning mechanisms).
more »
« less
- Award ID(s):
- 2239897
- PAR ID:
- 10500773
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
- Volume:
- 7
- Issue:
- 4
- ISSN:
- 2474-9567
- Page Range / eLocation ID:
- 1 to 28
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent years have seen the increasing attention and popularity of federated learning (FL), a distributed learning framework for privacy and data security. However, by its fundamental design, federated learning is inherently vulnerable to model poisoning attacks: a malicious client may submit the local updates to influence the weights of the global model. Therefore, detecting malicious clients against model poisoning attacks in federated learning is useful in safety-critical tasks.However, existing methods either fail to analyze potential malicious data or are computationally restrictive. To overcome these weaknesses, we propose a robust federated learning method where the central server learns a supervised anomaly detector using adversarial data generated from a variety of state-of-the-art poisoning attacks. The key idea of this powerful anomaly detector lies in a comprehensive understanding of the benign update through distinguishing it from the diverse malicious ones. The anomaly detector would then be leveraged in the process of federated learning to automate the removal of malicious updates (even from unforeseen attacks).Through extensive experiments, we demonstrate its effectiveness against backdoor attacks, where the attackers inject adversarial triggers such that the global model will make incorrect predictions on the poisoned samples. We have verified that our method can achieve 99.0% detection AUC scores while enjoying longevity as the model converges. Our method has also shown significant advantages over existing robust federated learning methods in all settings. Furthermore, our method can be easily generalized to incorporate newly-developed poisoning attacks, thus accommodating ever-changing adversarial learning environments.more » « less
-
Monitoring a large population of dynamic processes with limited resources presents a significant challenge across various industrial sectors. This is due to 1) the inherent disparity between the available monitoring resources and the extensive number of processes to be monitored and 2) the unpredictable and heterogeneous dynamics inherent in the progression of these processes. Online learning approaches, commonly referred to as bandit methods, have demonstrated notable potential in addressing this issue by dynamically allocating resources and effectively balancing the exploitation of high-reward processes and the exploration of uncertain ones. However, most online learning algorithms are designed for 1) a centralized setting that requires data sharing across processes for accurate predictions or 2) a homogeneity assumption that estimates a single global model from decentralized data. To overcome these limitations and enable online learning in a heterogeneous population under a decentralized setting, we propose a federated collaborative online monitoring method. Our approach utilizes representation learning to capture the latent representative models within the population and introduces a novel federated collaborative UCB algorithm to estimate these models from sequentially observed decentralized data. This strategy facilitates informed monitoring of resource allocation. The efficacy of our method is demonstrated through theoretical analysis, simulation studies, and its application to decentralized cognitive degradation monitoring in Alzheimer’s disease.more » « less
-
null (Ed.)Federated learning enables thousands of participants to construct a deep learning model without sharing their private training data with each other. For example, multiple smartphones can jointly train a next-word predictor for keyboards without revealing what individual users type. We demonstrate that any participant in federated learning can introduce hidden backdoor functionality into the joint global model, e.g., to ensure that an image classifier assigns an attacker-chosen label to images with certain features, or that a word predictor completes certain sentences with an attacker-chosen word. We design and evaluate a new model-poisoning methodology based on model replacement. An attacker selected in a single round of federated learning can cause the global model to immediately reach 100% accuracy on the backdoor task. We evaluate the attack under different assumptions for the standard federated-learning tasks and show that it greatly outperforms data poisoning. Our generic constrain-and-scale technique also evades anomaly detection-based defenses by incorporating the evasion into the attacker's loss function during training.more » « less
-
Human mobility anomaly detection based on location is essential in areas such as public health, safety, welfare, and urban planning. Developing models and approaches for location-based anomaly detection requires a comprehensive dataset. However, privacy concerns and the absence of ground truth hinder the availability of publicly available datasets. With this paper, we provide extensive simulated human mobility datasets featuring various anomaly types created using an existing Urban Patterns of Life Simulation. To create these datasets, we inject changes in the logic of individual agents to change their behavior. Specifically, we create four of anomalous agent behavior by (1) changing the agents’ appetite (causing agents to have meals more frequently), (2) changing their group of interest (causing agents to interact with different agents from another group). (3) changing their social place selection (causing agents to visit different recreational places) and (4) changing their work schedule (causing agents to skip work), For each type of anomaly, we use three degrees of behavioral change to tune the difficulty of detecting the anomalous agents. To select agents to inject anomalous behavior into, we employ three methods: (1) Random selection using a centralized manipulation mechanism, (2) Spread based selection using an infectious disease model, and (3) through exposure of agents to a specific location. All datasets are split into normal and anomalous phases. The normal phase, which can be used for training models of normalcy, exhibits no anomalous behavior. The anomalous phase, which can be used for testing for anomalous detection algorithm, includes ground truth labels that indicate, for each five-minute simulation step, which agents are anomalous at that time. Datasets are generated using the maps (roads and buildings) for Atlanta and Berlin having 1k agents in each simulation. All datasets are openly available at https://osf.io/dg6t3/. Additionally, we provide instructions to regenerate the data for other locations and numbers of agents.more » « less
An official website of the United States government

