skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A six degrees-of-freedom cable-driven robotic platform for head–neck movement
Abstract This paper introduces a novel cable-driven robotic platform that enables six degrees-of-freedom (DoF) natural head–neck movements. Poor postural control of the head–neck can be a debilitating symptom of neurological disorders such as amyotrophic lateral sclerosis and cerebral palsy. Current treatments using static neck collars are inadequate, and there is a need to develop new devices to empower movements and facilitate physical rehabilitation of the head–neck. State-of-the-art neck exoskeletons using lower DoF mechanisms with rigid linkages are limited by their hard motion constraints imposed on head–neck movements. By contrast, the cable-driven robot presented in this paper does not constrain motion and enables wide-range, 6-DoF control of the head–neck. We present the mechatronic design, validation, and control implementations of this robot, as well as a human experiment to demonstrate a potential use case of this versatile robot for rehabilitation. Participants were engaged in a target reaching task while the robot applied both assistive and resistive moments on the head during the task. Our results show that neck muscle activation increased by 19% when moving the head against resistance and decreased by 28–43% when assisted by the robot. Overall, these results provide a scientific justification for further research in enabling movement and identifying personalized rehabilitation for motor training. Beyond rehabilitation, other applications such as applying force perturbations on the head to study sensory integration and applying traction to achieve pain relief may benefit from the innovation of this robotic platform which is capable of applying controlled 6-DoF forces/moments on the head.  more » « less
Award ID(s):
2240508
PAR ID:
10500840
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
14
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Affecting muscle spasticity, strength, and coordination, stroke results in alterations to muscle control and ability to compensate from unexpected perturbations. Post-stroke, upper extremity movements are heavily modified from perturbations, which increase the difficulty of activities of daily living (ADLs). Postural responses from upper extremity perturbations in healthy and stroke populations have been examined in movements constrained to 2D planar motion, and may provide insight as an assessment tool to help inform therapists to better structure rehabilitation training regimens towards individualized health care for improved long-term outcomes. However, implications on constraining motion in the horizontal plane are not clear and may reduce the generalizability of the findings to the movement through unconstrained 3D space necessary for ADLs. In this paper, we explore the effects of joint perturbations on the elbow and shoulder in unconstrained, gravity-compensated position holding tasks. We present a metric-diverse, dynamic task framework building upon previous 2D experiments designed to better assess rehabilitative efforts in movement trajectories with applied gravity compensation in three dimensional space aimed towards the generalizability of 3D motion. Results suggest that motion of multi-DoF joints display varied movement qualities in 3D space with robotic gravity compensation when compared to constrained planar movements. 
    more » « less
  2. null (Ed.)
    This paper addresses the problem of autonomously deploying an unmanned aerial vehicle in non-trivial settings, by leveraging a manipulator arm mounted on a ground robot, acting as a versatile mobile launch platform. As real-world deployment scenarios for micro aerial vehicles such as searchand- rescue operations often entail exploration and navigation of challenging environments including uneven terrain, cluttered spaces, or even constrained openings and passageways, an often arising problem is that of ensuring a safe take-off location, or safely fitting through narrow openings while in flight. By facilitating launching from the manipulator end-effector, a 6- DoF controllable take-off pose within the arm workspace can be achieved, which allows to properly position and orient the aerial vehicle to initialize the autonomous flight portion of a mission. To accomplish this, we propose a sampling-based planner that respects a) the kinematic constraints of the ground robot / manipulator / aerial robot combination, b) the geometry of the environment as autonomously mapped by the ground robots perception systems, and c) accounts for the aerial robot expected dynamic motion during takeoff. The goal of the proposed planner is to ensure autonomous collision-free initialization of an aerial robotic exploration mission, even within a cluttered constrained environment. At the same time, the ground robot with the mounted manipulator can be used to appropriately position the take-off workspace into areas of interest, effectively acting as a carrier launch platform. We experimentally demonstrate this novel robotic capability through a sequence of experiments that encompass a micro aerial vehicle platform carried and launched from a 6-DoF manipulator arm mounted on a four-wheel robot base. 
    more » « less
  3. We present the Human And Robot Multimodal Observations of Natural Interactive Collaboration (HARMONIC) dataset. This is a large multimodal dataset of human interactions with a robotic arm in a shared autonomy setting designed to imitate assistive eating. The dataset provides human, robot, and environmental data views of 24 different people engaged in an assistive eating task with a 6-degree-of-freedom (6-DOF) robot arm. From each participant, we recorded video of both eyes, egocentric video from a head-mounted camera, joystick commands, electromyography from the forearm used to operate the joystick, third-person stereo video, and the joint positions of the 6-DOF robot arm. Also included are several features that come as a direct result of these recordings, such as eye gaze projected onto the egocentric video, body pose, hand pose, and facial keypoints. These data streams were collected specifically because they have been shown to be closely related to human mental states and intention. This dataset could be of interest to researchers studying intention prediction, human mental state modeling, and shared autonomy. Data streams are provided in a variety of formats such as video and human-readable CSV and YAML files. 
    more » « less
  4. null (Ed.)
    Individuals post stroke experience motor impair- ments, such as loss of independent joint control, weakness, and delayed movement initiation, leading to an overall reduction in arm function. Their motion becomes slower and more discoordinated, making it difficult to complete timing- sensitive tasks, such as balancing a glass of water or carrying a bowl with a ball inside it. Understanding how the stroke- induced motor impairments interact with each other can help design assisted training regimens for improved recovery. In this study, we investigate the effects of abnormal joint coupling patterns induced by flexion synergy on timing-sensitive motor coordination in the paretic upper limb. We design a virtual ball-in-bowl task that requires fast movements for optimal performance and implement it on a robotic system, capable of providing varying levels of abduction loading at the shoulder. We recruit 12 participants (6 individuals with chronic stroke and 6 unimpaired controls) and assess their skill at the task at 3 levels of loading, defined by the vertical force applied at the robot end-effector. Our results show that, for individuals with stroke, loading has a significant effect on their ability to generate quick coordinated motion. With increases in loading, their overall task performance decreases and they are less able to compensate for ball dynamics—frequency analysis of their motion indicates that abduction loading weakens their ability to generate movements at the resonant frequency of the dynamic task. This effect is likely due to an increased reliance on lower resolution indirect motor pathways in individuals post stroke. Given the inter-dependency of loading and dynamic task performance, we can create targeted robot-aided training protocols focused on improving timing-sensitive motor control, similar to existing progressive loading therapies, which have shown efficacy for expanding reachable workspace post stroke. 
    more » « less
  5. Hand gestures are a natural and intuitive form of communication, and integrating this communication method into robotic systems presents significant potential to improve human-robot collaboration. Recent advances in motor neuroscience have focused on replicating human hand movements from synergies also known as movement primitives. Synergies, fundamental building blocks of movement, serve as a potential strategy adapted by the central nervous system to generate and control movements. Identifying how synergies contribute to movement can help in dexterous control of robotics, exoskeletons, prosthetics and extend its applications to rehabilitation. In this paper, 33 static hand gestures were recorded through a single RGB camera and identified in real-time through the MediaPipe framework as participants made various postures with their dominant hand. Assuming an open palm as initial posture, uniform joint angular velocities were obtained from all these gestures. By applying a dimensionality reduction method, kinematic synergies were obtained from these joint angular velocities. Kinematic synergies that explain 98% of variance of movements were utilized to reconstruct new hand gestures using convex optimization. Reconstructed hand gestures and selected kinematic synergies were translated onto a humanoid robot, Mitra, in real-time, as the participants demonstrated various hand gestures. The results showed that by using only few kinematic synergies it is possible to generate various hand gestures, with 95.7% accuracy. Furthermore, utilizing low-dimensional synergies in control of high dimensional end effectors holds promise to enable near-natural human-robot collaboration. 
    more » « less