Motivated by the growing theoretical understanding of neural networks that employ the Rectified Linear Unit (ReLU) as their activation function, we revisit the use of ReLU activation functions for learning implicit neural representations (INRs). Inspired by second order B-spline wavelets, we incorporate a set of simple constraints to the ReLU neurons in each layer of a deep neural network (DNN) to remedy the spectral bias. This in turn enables its use for various INR tasks. Empirically, we demonstrate that, contrary to popular belief, one can learn state-of-the-art INRs based on a DNN composed of only ReLU neurons. Next, by leveraging recent theoretical works which characterize the kinds of functions ReLU neural networks learn, we provide a way to quantify the regularity of the learned function. This offers a principled approach to selecting the hyperparameters in INR architectures. We substantiate our claims through experiments in signal representation, super resolution, and computed tomography, demonstrating the versatility and effectiveness of our method. The code for all experiments can be found at https://github.com/joeshenouda/relu-inrs.
more »
« less
Approximation of compositional functions with ReLU neural networks
The power of DNN has been successfully demonstrated on a wide variety of high-dimensional problems that cannot be solved by conventional control design methods. These successes also uncover some fundamental and pressing challenges in understanding the representability of deep neural networks for complex and high dimensional input–output relations. Towards the goal of understanding these fundamental questions, we applied an algebraic framework developed in our previous work to analyze ReLU neural network approximation of compositional functions. We prove that for Lipschitz continuous functions, ReLU neural networks have an approximation error upper bound that is a polynomial of the network’s complexity and the compositional features. If the compositional features do not increase exponentially with dimension, which is the case in many applications, the complexity of DNN has a polynomial growth. In addition to function approximations, we also establish ReLU network approximation results for the trajectories of control systems, and for a Lyapunov function that characterizes the domain of attraction.
more »
« less
- Award ID(s):
- 2134235
- PAR ID:
- 10500950
- Publisher / Repository:
- ELSEVIER
- Date Published:
- Journal Name:
- Systems control letters
- ISSN:
- 0167-6911
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A wide variety of activation functions have been proposed for neural networks. The Rectified Linear Unit (ReLU) is especially popular today. There are many practical reasons that motivate the use of the ReLU. This paper provides new theoretical characterizations that support the use of the ReLU, its variants such as the leaky ReLU, as well as other activation functions in the case of univariate, single-hidden layer feedforward neural networks. Our results also explain the importance of commonly used strategies in the design and training of neural networks such as “weight decay” and “path-norm” regularization, and provide a new justification for the use of “skip connections” in network architectures. These new insights are obtained through the lens of spline theory. In particular, we show how neural network training problems are related to infinite-dimensional optimizations posed over Banach spaces of functions whose solutions are well-known to be fractional and polynomial splines, where the particular Banach space (which controls the order of the spline) depends on the choice of activation function.more » « less
-
Pérez, Guillermo A.; Raskin, Jean-François (Ed.)Deep neural networks (DNNs) are increasingly being deployed to perform safety-critical tasks. The opacity of DNNs, which prevents humans from reasoning about them, presents new safety and security challenges. To address these challenges, the verification community has begun developing techniques for rigorously analyzing DNNs, with numerous verification algorithms proposed in recent years. While a significant amount of work has gone into developing these verification algorithms, little work has been devoted to rigorously studying the computability and complexity of the underlying theoretical problems. Here, we seek to contribute to the bridging of this gap. We focus on two kinds of DNNs: those that employ piecewise-linear activation functions (e.g., ReLU), and those that employ piecewise-smooth activation functions (e.g., Sigmoids). We prove the two following theorems: 1. The decidability of verifying DNNs with piecewise-smooth activation functions is equivalent to a well-known, open problem formulated by Tarski; and 2. The DNN verification problem for any quantifier-free linear arithmetic specification can be reduced to the DNN reachability problem, whose approximation is NP-complete. These results answer two fundamental questions about the computability and complexity of DNN verification, and the ways it is affected by the network’s activation functions and error tolerance; and could help guide future efforts in developing DNN verification tools.more » « less
-
Understanding the fundamental mechanism behind the success of deep neural networks is one of the key challenges in the modern machine learning literature. Despite numerous attempts, a solid theoretical analysis is yet to be developed. In this paper, we develop a novel unified framework to reveal a hidden regularization mechanism through the lens of convex optimization. We first show that the training of multiple threelayer ReLU sub-networks with weight decay regularization can be equivalently cast as a convex optimization problem in a higher dimensional space, where sparsity is enforced via a group `1- norm regularization. Consequently, ReLU networks can be interpreted as high dimensional feature selection methods. More importantly, we then prove that the equivalent convex problem can be globally optimized by a standard convex optimization solver with a polynomial-time complexity with respect to the number of samples and data dimension when the width of the network is fixed. Finally, we numerically validate our theoretical results via experiments involving both synthetic and real datasets.more » « less
-
Pérez, Guillermo A; Raskin, Jean-François (Ed.)Deep neural networks (DNNs) are increasingly being deployed to perform safety-critical tasks. The opacity of DNNs, which prevents humans from reasoning about them, presents new safety and security challenges. To address these challenges, the verification community has begun developing techniques for rigorously analyzing DNNs, with numerous verification algorithms proposed in recent years. While a significant amount of work has gone into developing these verification algorithms, little work has been devoted to rigorously studying the computability and complexity of the underlying theoretical problems. Here, we seek to contribute to the bridging of this gap. We focus on two kinds of DNNs: those that employ piecewise-linear activation functions (e.g., ReLU), and those that employ piecewise-smooth activation functions (e.g., Sigmoids). We prove the two following theorems: (i) the decidability of verifying DNNs with a particular set of piecewise-smooth activation functions, including Sigmoid and tanh, is equivalent to a well-known, open problem formulated by Tarski; and (ii) the DNN verification problem for any quantifier-free linear arithmetic specification can be reduced to the DNN reachability problem, whose approximation is NP-complete. These results answer two fundamental questions about the computability and complexity of DNN verification, and the ways it is affected by the network’s activation functions and error tolerance; and could help guide future efforts in developing DNN verification tools.more » « less
An official website of the United States government

