Social media data have been increasingly used to study biomedical and health-related phenomena. From cohort-level discussions of a condition to population-level analyses of sentiment, social media have provided scientists with unprecedented amounts of data to study human behavior associated with a variety of health conditions and medical treatments. Here we review recent work in mining social media for biomedical, epidemiological, and social phenomena information relevant to the multilevel complexity of human health. We pay particular attention to topics where social media data analysis has shown the most progress, including pharmacovigilance and sentiment analysis, especially for mental health. We also discuss a variety of innovative uses of social media data for health-related applications as well as important limitations of social media data access and use. 
                        more » 
                        « less   
                    This content will become publicly available on December 1, 2025
                            
                            Developing a social sensing index for monitoring place-oriented mental health issues using social media (twitter) data
                        
                    
    
            Abstract Research shows that certain external factors can affect the mental health of many people in a community. Moreover, the importance of mental health has significantly increased in recent years due to the COVID-19 pandemic. Many people communicate and express their emotions through social media platforms, which provide researchers with opportunities to examine insights into their opinions and mental state. While social sensing studies using social media data have flourished in the last decade, many studies using social media data to detect and predict mental health status have focused on the individual level. In this study, we aim to generate a social sensing index for mental health to monitor emotional well-being, which is closely related to mental health, and to identify daily trends in negative emotions at the city level. We conduct sentiment analysis on Twitter data and compute entropy of the degree of sentiment change to develop the index. We observe sentiment trends fluctuate significantly in response to unusual events. It is found that the social sensing index for mental health reflects both city-wide and local events that trigger negative emotions, as well as areas where negative emotions persist. The study contributes to the growing body of research that uses social media data to examine mental health at a city-level. We focus on mental health at the city-level rather than individual, which provides a broader perspective on the mental health of a population. Social sensing index for mental health allows public health professionals to monitor and identify persistent negative sentiments and potential areas where mental health issues may emerge. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2043202
- PAR ID:
- 10501107
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Urban Informatics
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2731-6963
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Background As a number of vaccines for COVID-19 are given emergency use authorization by local health agencies and are being administered in multiple countries, it is crucial to gain public trust in these vaccines to ensure herd immunity through vaccination. One way to gauge public sentiment regarding vaccines for the goal of increasing vaccination rates is by analyzing social media such as Twitter. Objective The goal of this research was to understand public sentiment toward COVID-19 vaccines by analyzing discussions about the vaccines on social media for a period of 60 days when the vaccines were started in the United States. Using the combination of topic detection and sentiment analysis, we identified different types of concerns regarding vaccines that were expressed by different groups of the public on social media. Methods To better understand public sentiment, we collected tweets for exactly 60 days starting from December 16, 2020 that contained hashtags or keywords related to COVID-19 vaccines. We detected and analyzed different topics of discussion of these tweets as well as their emotional content. Vaccine topics were identified by nonnegative matrix factorization, and emotional content was identified using the Valence Aware Dictionary and sEntiment Reasoner sentiment analysis library as well as by using sentence bidirectional encoder representations from transformer embeddings and comparing the embedding to different emotions using cosine similarity. Results After removing all duplicates and retweets, 7,948,886 tweets were collected during the 60-day time period. Topic modeling resulted in 50 topics; of those, we selected 12 topics with the highest volume of tweets for analysis. Administration and access to vaccines were some of the major concerns of the public. Additionally, we classified the tweets in each topic into 1 of the 5 emotions and found fear to be the leading emotion in the tweets, followed by joy. Conclusions This research focused not only on negative emotions that may have led to vaccine hesitancy but also on positive emotions toward the vaccine. By identifying both positive and negative emotions, we were able to identify the public's response to the vaccines overall and to news events related to the vaccines. These results are useful for developing plans for disseminating authoritative health information and for better communication to build understanding and trust.more » « less
- 
            Arai, K. (Ed.)Individuals spend a significant portion of their time on social media. It has become a platform for expression of feelings, sharing of ideas and connecting with other individuals using video and audio posts, textual data such as comments and descriptions and so on. Social media has a considerable impact on people’s daily life. In recent time, there is an enormous growth in number of people using Twitter and Instagram to share their emotions and sentiments which represents their actual feelings. In this work, we apply Machine Learning techniques on social media data to perform a comprehensive investigation to detect the risk of depression in people. Our work can help to detect various symptoms such sadness, loneliness, detachment etc. providing an insight for forensic analysts and law enforcement agencies about the person’s mental state. The experimental results show that Extra Tree Classifier performs significantly better over the other models in detecting the sentiment of people using social media data.more » « less
- 
            Research has rarely examined how the COVID-19 pandemic may affect teens’ social media engagement and psychological wellbeing, and even less research has compared the difference between teens with and without mental health concerns. We collected and analyzed weekly data from January to December 2020 from teens in four Reddit communities (subreddits), including teens in r/Teenagers and teens who participated in three mental health subreddits (r/Depression, r/Anxiety, and r/SuicideWatch). The results showed that teens’ weekly subreddit participation, posting/commenting frequency, and emotion expression were related to significant pandemic events. Teen Redditors on r/Teenagers had a higher posting/commenting frequency but lower negative emotion than teen Redditors on the three mental health subreddits. When comparing posts/comments on r/Teenagers, teens who ever visited one of the three mental health subreddits posted/commented twice as frequently as teens who did not, but their emotion expression was similar. The results from the Interrupted Time Series Analysis (ITSA) indicated that both teens with and without mental health concerns reversed the trend in posting frequency and negative emotion from declining to increasing right after the pandemic outbreak, and teens with mental health concerns had a more rapidly increasing trend in posting/commenting. The findings suggest that teens’ social media engagement and emotion expression reflect the pandemic evolution. Teens with mental health concerns are more likely to reveal their emotions on specialized mental health subreddits rather than on the general r/Teenagers subreddit. In addition, the findings indicated that teens with mental health concerns had a strong social interaction desire that various barriers in the real world may inhibit. The findings call for more attention to understand the pandemic’s influence on teens by monitoring and analyzing social media data and offering adequate support to teens regarding their mental health wellbeing.more » « less
- 
            By quantifying Twitter activity and sentiment for each of 274 neighborhood areas in New York City, this study introduces the Neighborhood Popularity Index and correlates changes in the index with real estate prices, a common measure of neighborhood change. Results show that social media provide both a near-real-time indicator of shifting attitudes toward neighborhoods and an early warning measure of future changes in neighborhood composition and demand. Although social media data provide an important complement to traditional data sources, the use of social media for neighborhood studies raises concerns regarding data accessibility and equity issues in data representativeness and bias.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
