We report the development and testing of new integrated cyberinfrastructure for performing free energy simulations with generalized hybrid quantum mechanical/molecular mechanical (QM/MM) and machine learning potentials (MLPs) in Amber. The Sander molecular dynamics program has been extended to leverage fast, density-functional tight-binding models implemented in the DFTB+ and xTB packages, and an interface to the DeePMD-kit software enables the use of MLPs. The software is integrated through application program interfaces that circumvent the need to perform “system calls” and enable the incorporation of long-range Ewald electrostatics into the external software’s self-consistent field procedure. The infrastructure provides access to QM/MM models that may serve as the foundation for QM/MM–ΔMLP potentials, which supplement the semiempirical QM/MM model with a MLP correction trained to reproduce ab initio QM/MM energies and forces. Efficient optimization of minimum free energy pathways is enabled through a new surface-accelerated finite-temperature string method implemented in the FE-ToolKit package. Furthermore, we interfaced Sander with the i-PI software by implementing the socket communication protocol used in the i-PI client–server model. The new interface with i-PI allows for the treatment of nuclear quantum effects with semiempirical QM/MM–ΔMLP models. The modular interoperable software is demonstrated on proton transfer reactions in guanine-thymine mispairs in a B-form deoxyribonucleic acid helix. The current work represents a considerable advance in the development of modular software for performing free energy simulations of chemical reactions that are important in a wide range of applications.
more »
« less
Surface-Accelerated String Method for Locating Minimum Free Energy Paths
We present a surface-accelerated string method (SASM) to efficiently optimize low-dimensional reaction pathways from the sampling performed with expensive quantum mechanical/molecular mechanical (QM/MM) Hamiltonians. The SASM accelerates the convergence of the path using the aggregate sampling obtained from the current and previous string iterations, whereas approaches like the string method in collective variables (SMCV) or the modified string method in collective variables (MSMCV) update the path only from the sampling obtained from the current iteration. Furthermore, the SASM decouples the number of images used to perform sampling from the number of synthetic images used to represent the path. The path is optimized on the current best estimate of the free energy surface obtained from all available sampling, and the proposed set of new simulations is not restricted to being located along the optimized path. Instead, the umbrella potential placement is chosen to extend the range of the free energy surface and improve the quality of the free energy estimates near the path. In this manner, the SASM is shown to improve the exploration for a minimum free energy pathway in regions where the free energy surface is relatively flat. Furthermore, it improves the quality of the free energy profile when the string is discretized with too few images. We compare the SASM, SMCV, and MSMCV using 3 QM/MM applications: a ribozyme methyltransferase reaction using 2 reaction coordinates, the 2′-O-transphosphorylation reaction of Hammerhead ribozyme using 3 reaction coordinates, and a tautomeric reaction in B-DNA using 5 reaction coordinates. We show that SASM converges the paths using roughly 3 times less sampling than the SMCV and MSMCV methods. All three algorithms have been implemented in the FE-ToolKit package made freely available.
more »
« less
- Award ID(s):
- 2209718
- PAR ID:
- 10501401
- Publisher / Repository:
- ACS
- Date Published:
- Journal Name:
- Journal of Chemical Theory and Computation
- Volume:
- 20
- Issue:
- 5
- ISSN:
- 1549-9618
- Page Range / eLocation ID:
- 2058 to 2073
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We describe a strategy of integrating quantum mechanical (QM), hybrid quantum mechanical/molecular mechanical (QM/MM) and MM simulations to analyze the physical properties of a solid/water interface. This protocol involves using a correlated ab initio (CCSD(T)) method to first calibrate Density Functional Theory (DFT) as the QM approach, which is then used in QM/MM simulations to compute relevant free energy quantities at the solid/water interface using a mean-field approximation of Yang et al. that decouples QM and MM thermal fluctuations; gas-phase QM/MM and periodic DFT calculations are used to determine the proper QM size in the QM/MM simulations. Finally, the QM/MM free energy results are compared with those obtained from MM simulations to directly calibrate the force field model for the solid/water interface. This protocol is illustrated by examining the orientations of an alkyl amine ligand at the gold/water interface, since the ligand conformation is expected to impact the chemical properties ( e.g. , charge) of the solid surface. DFT/MM and MM simulations using the INTERFACE force field lead to consistent results, suggesting that the effective gold/ligand interactions can be adequately described by a van der Waals model, while electrostatic and induction effects are largely quenched by solvation. The observed differences among periodic DFT, QM/MM and MM simulations, nevertheless, suggest that explicitly including electronic polarization and potentially charge transfer in the MM model can be important to the quantitative accuracy. The strategy of integrating multiple computational methods to cross-validate each other for complex interfaces is applicable to many problems that involve both inorganic/metallic and organic/biomolecular components, such as functionalized nanoparticles.more » « less
-
Abstract The bacterial enzyme class of β-lactamases are involved in benzylpenicillin acylation reactions, which are currently being revisited using hybrid quantum mechanical molecular mechanical (QM/MM) chain-of-states pathway optimizations. Minimum energy pathways are sampled by reoptimizing pathway geometry under different representative protein environments obtained through constrained molecular dynamics simulations. Predictive potential energy surface models in the reaction space are trained with machine-learning regression techniques. Herein, using TEM-1/benzylpenicillin acylation reaction as the model system, we introduce two model-independent criteria for delineating the energetic contributions and correlations in the predicted reaction space. Both methods are demonstrated to effectively quantify the energetic contribution of each chemical process and identify the rate limiting step of enzymatic reaction with high degrees of freedom. The consistency of the current workflow is tested under seven levels of quantum chemistry theory and three non-linear machine-learning regression models. The proposed approaches are validated to provide qualitative compliance with experimental mutagenesis studies.more » « less
-
Abstract Gaussian accelerated molecular dynamics (GaMD) is a robust computational method for simultaneous unconstrained enhanced sampling and free energy calculations of biomolecules. It works by adding a harmonic boost potential to smooth biomolecular potential energy surface and reduce energy barriers. GaMD greatly accelerates biomolecular simulations by orders of magnitude. Without the need to set predefined reaction coordinates or collective variables, GaMD provides unconstrained enhanced sampling and is advantageous for simulating complex biological processes. The GaMD boost potential exhibits a Gaussian distribution, thereby allowing for energetic reweighting via cumulant expansion to the second order (i.e., “Gaussian approximation”). This leads to accurate reconstruction of free energy landscapes of biomolecules. Hybrid schemes with other enhanced sampling methods, such as the replica‐exchange GaMD (rex‐GaMD) and replica‐exchange umbrella sampling GaMD (GaREUS), have also been introduced, further improving sampling and free energy calculations. Recently, new “selective GaMD” algorithms including the Ligand GaMD (LiGaMD) and Peptide GaMD (Pep‐GaMD) enabled microsecond simulations to capture repetitive dissociation and binding of small‐molecule ligands and highly flexible peptides. The simulations then allowed highly efficient quantitative characterization of the ligand/peptide binding thermodynamics and kinetics. Taken together, GaMD and its innovative variants are applicable to simulate a wide variety of biomolecular dynamics, including protein folding, conformational changes and allostery, ligand binding, peptide binding, protein–protein/nucleic acid/carbohydrate interactions, and carbohydrate/nucleic acid interactions. In this review, we present principles of the GaMD algorithms and recent applications in biomolecular simulations and drug design. This article is categorized under:Structure and Mechanism > Computational Biochemistry and BiophysicsMolecular and Statistical Mechanics > Molecular Dynamics and Monte‐Carlo MethodsMolecular and Statistical Mechanics > Free Energy Methodsmore » « less
-
We present a reformulation of QM/MM as a fully quantum mechanical theory of interacting subsystems, all treated at the level of density functional theory (DFT). For the MM subsystem, which lacks orbitals, we assign an ad hoc electron density and apply orbital-free DFT functionals to describe its quantum properties. The interaction between the QM and MMsubsystems is also treated using orbital-free density functionals, accounting for Coulomb interactions, exchange, correlation, and Pauli repulsion. Consistency across QM and MM subsystems is ensured by employing data-driven, many-body MM force fields that faithfully represent DFT functionals. Applications to water-solvated systems demonstrate that this approach achieves unprecedented, very rapid convergence to chemical accuracy as the size of the QM subsystem increases. We validate the method with several pilot studies, including water bulk, water clusters (prism hexamer and pentamers), solvated glucose, a palladium aqua ion, and a wet monolayer of MoS2.more » « less
An official website of the United States government

