skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Forging just ecologies: 25 years of urban long-term ecological research collaboration
Abstract We ask how environmental justice and urban ecology have influenced one another over the past 25 years in the context of the US Long-Term Ecological Research (LTER) program and Baltimore Ecosystem Study (BES) project. BES began after environmental justice emerged through activism and scholarship in the 1980s but spans a period of increasing awareness among ecologists and environmental practitioners. The work in Baltimore provides a detailed example of how ecological research has been affected by a growing understanding of environmental justice. The shift shows how unjust environmental outcomes emerge and are reinforced over time by systemic discrimination and exclusion. We do not comprehensively review the literature on environmental justice in urban ecology but do present four brief cases from the Caribbean, Africa, and Asia, to illustrate the global relevance of the topic. The example cases demonstrate the necessity for continuous engagement with communities in addressing environmental problem solving.  more » « less
Award ID(s):
1934933
PAR ID:
10501635
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Ambio
Volume:
53
Issue:
6
ISSN:
0044-7447
Format(s):
Medium: X Size: p. 826-844
Size(s):
p. 826-844
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The Earth's population will become more than 80% urban during this century. This threshold is often regarded as sufficient justification for pursuing urban ecology. However, pursuit has primarily focused on building empirical richness, and urban ecology theory is rarely discussed. The Baltimore Ecosystem Study (BES) has been grounded in theory since its inception and its two decades of data collection have stimulated progress toward comprehensive urban theory. Emerging urban ecology theory integrates biology, physical sciences, social sciences, and urban design, probes interdisciplinary frontiers while being founded on textbook disciplinary theories, and accommodates surprising empirical results. Theoretical growth in urban ecology has relied on refined frameworks, increased disciplinary scope, and longevity of interdisciplinary interactions. We describe the theories used by BES initially, and trace ongoing theoretical development that increasingly reflects the hybrid biological–physical–social nature of the Baltimore ecosystem. The specific mix of theories used in Baltimore likely will require modification when applied to other urban areas, but the developmental process, and the key results, will continue to benefit other urban social–ecological research projects. 
    more » « less
  2. Urban areas are dynamic ecological systems defined by interdependent biological, physical, and social components. The emergent structure and heterogeneity of urban landscapes drives biotic outcomes in these areas, and such spatial patterns are often attributed to the unequal stratification of wealth and power in human societies. Despite these patterns, few studies have effectively considered structural inequalities as drivers of ecological and evolutionary outcomes and have instead focused on indicator variables such as neighborhood wealth. In this analysis, we explicitly integrate ecology, evolution, and social processes to emphasize the relationships that bind social inequities—specifically racism—and biological change in urbanized landscapes. We draw on existing research to link racist practices, including residential segregation, to the heterogeneous patterns of flora and fauna observed by urban ecologists. In the future, urban ecology and evolution researchers must consider how systems of racial oppression affect the environmental factors that drive biological change in cities. Conceptual integration of the social and ecological sciences has amassed considerable scholarship in urban ecology over the past few decades, providing a solid foundation for incorporating environmental justice scholarship into urban ecological and evolutionary research. Such an undertaking is necessary to deconstruct urbanization’s biophysical patterns and processes, inform equitable and anti-racist initiatives promoting justice in urban conservation, and strengthen community resilience to global environmental change. 
    more » « less
  3. Long-term monitoring of riparian water tables and groundwater chemistry began in 2000 along four first or second order steams in and around the Gwynns Falls watershed in Baltimore City and County, MD. One site (Oregon Ridge) is in the completely forested Pond Branch catchment that serves as a ""reference"" study area for the Baltimore LTER (BES). Two sites (Glyndon, Gwynbrook) were in suburban areas of the watershed; one just upstream from the Glyndon BES long-term stream monitoring site in the headwaters of the Gwynns Falls, and one along a tributary that enters the Gwynns Falls just above the Gwynnbrook BES long-term stream monitoring site farther downstream. The final, urban site (Cahill) was along a tributary to the Gwynns Falls in Leakin Park in the urban core of the watershed. Water table data and more detailed descriptions of soils, vegetation, stream channel properties and microbial processes at these sites can be found in Groffman et al. (2002, Environmental Science and Technology 36:4547-4552) and Gift et al. (2010, Restoration Ecology 18:113-120). 
    more » « less
  4. Abstract Land-use change is highly dynamic globally and there is great uncertainty about the effects of land-use legacies on contemporary environmental performance. We used a chronosequence of urban grasslands (lawns) that were converted from agricultural and forested lands from 10 to over 130 years prior to determine if land-use legacy influences components of soil biodiversity and composition over time. We used historical aerial imagery to identify sites in Baltimore County, MD (USA) with agricultural versus forest land-use history. Soil samples were taken from these sites as well as from existing well-studied agricultural and forest sites used as historical references by the National Science Foundation Long-Term Ecological Research Baltimore Ecosystem Study program. We found that the microbiomes in lawns of agricultural origin were similar to those in agricultural reference sites, which suggests that the ecological parameters on lawns and reference agricultural systems are similar in how they influence soil microbial community dynamics. In contrast, lawns that were previously forest showed distinct shifts in soil bacterial composition upon recent conversion but reverted back in composition similar to forest soils as the lawns aged over decades. Soil fungal communities shifted after forested land was converted to lawns, but unlike bacterial communities, did not revert in composition over time. Our results show that components of bacterial biodiversity and composition are resistant to change in previously forested lawns despite urbanization processes. Therefore land-use legacy, depending on the prior use, is an important factor to consider when examining urban ecological homogenization. 
    more » « less
  5. Abstract Given the large and increasing amount of urban, suburban, and exurban land use on Earth, there is a need to accurately assess net primary productivity (NPP) of urban ecosystems. However, the heterogeneous and dynamic urban mosaic presents challenges to the measurement of NPP, creating landscapes that may appear more similar to a savanna than to the native landscape replaced. Studies of urban biomass have tended to focus on one type of vegetation (e.g., lawns or trees). Yet a focus on the ecology of the city should include the entire urban ecosystem rather than the separate investigation of its parts. Furthermore, few studies have attempted to measure urban aboveground NPP (ANPP) using field‐based methods. Most studies project growth rates from measurements of tree diameter to estimate annual ANPP or use remote sensing approaches. In addition, field‐based methods for measuring NPP do not address any special considerations for adapting such field methods to urban landscapes. Frequent planting and partial or complete removal of herbaceous and woody plants can make it difficult to accurately quantify increments and losses of plant biomass throughout an urban landscape. In this study, we review how ANPP of urban landscapes can be estimated based on field measurements, highlighting the challenges specific to urban areas. We then estimated ANPP of woody and herbaceous vegetation over a 15‐year period for Baltimore, MD, USA using a combination of plot‐based field data and published values from the literature. Baltimore's citywide ANPP was estimated to be 355.8 g m−2, a result that we then put into context through comparison with other North American Long‐Term Ecological Research (LTER) sites and mean annual precipitation. We found our estimate of Baltimore citywide ANPP to be only approximately half as much (or less) than ANPP at forested LTER sites of the eastern United States, and more comparable to grassland, oldfield, desert, or boreal forest ANPP. We also found that Baltimore had low productivity for its level of precipitation. We conclude with a discussion of the significance of accurate assessment of primary productivity of urban ecosystems and critical future research needs. 
    more » « less