The electric
This content will become publicly available on December 1, 2024
Himalayan lakes represent critical water resources, culturally important waterbodies, and potential hazards. Some of these lakes experience dramatic waterlevel changes, responding to seasonal monsoon rains and postmonsoonal draining. To address the paucity of direct observations of hydrology in retreating mountain glacial systems, we describe a field program in a series of high altitude lakes in Sagarmatha National Park, adjacent to Ngozumba, the largest glacier in Nepal. In situ observations find extreme (>12 m) seasonal waterlevel changes in a 60m deep lateralmorainedammed lake (lacking surface outflow), during a 16month period, equivalent to a 5
 Award ID(s):
 1910824
 NSFPAR ID:
 10501844
 Publisher / Repository:
 Nature Publishing Group
 Date Published:
 Journal Name:
 Scientific Reports
 Volume:
 13
 Issue:
 1
 ISSN:
 20452322
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract E 1 and magneticM 1 dipole responses of the nucleus$$N=Z$$ $N=Z$ Mg were investigated in an inelastic photon scattering experiment. The 13.0 MeV electrons, which were used to produce the unpolarised bremsstrahlung in the entrance channel of the$$^{24}$$ ${}^{24}$ Mg($$^{24}$$ ${}^{24}$ ) reaction, were delivered by the ELBE accelerator of the HelmholtzZentrum DresdenRossendorf. The collimated bremsstrahlung photons excited one$$\gamma ,\gamma ^{\prime }$$ $\gamma ,{\gamma}^{\prime}$ , four$$J^{\pi }=1^$$ ${J}^{\pi}={1}^{}$ , and six$$J^{\pi }=1^+$$ ${J}^{\pi}={1}^{+}$ states in$$J^{\pi }=2^+$$ ${J}^{\pi}={2}^{+}$ Mg. Deexcitation$$^{24}$$ ${}^{24}$ rays were detected using the four highpurity germanium detectors of the$$\gamma $$ $\gamma $ ELBE setup, which is dedicated to nuclear resonance fluorescence experiments. In the energy region up to 13.0 MeV a total$$\gamma $$ $\gamma $ is observed, but this$$B(M1)\uparrow = 2.7(3)~\mu _N^2$$ $B\left(M1\right)\uparrow =2.7\left(3\right)\phantom{\rule{0ex}{0ex}}{\mu}_{N}^{2}$ nucleus exhibits only marginal$$N=Z$$ $N=Z$E 1 strength of less than e$$\sum B(E1)\uparrow \le 0.61 \times 10^{3}$$ $\sum B\left(E1\right)\uparrow \le 0.61\times {10}^{3}$ fm$$^2 \, $$ ${}^{2}\phantom{\rule{0ex}{0ex}}$ . The$$^2$$ ${}^{2}$ branching ratios in combination with the expected results from the Alaga rules demonstrate that$$B(\varPi 1, 1^{\pi }_i \rightarrow 2^+_1)/B(\varPi 1, 1^{\pi }_i \rightarrow 0^+_{gs})$$ $B(\Pi 1,{1}_{i}^{\pi}\to {2}_{1}^{+})/B(\Pi 1,{1}_{i}^{\pi}\to {0}_{\mathrm{gs}}^{+})$K is a good approximative quantum number for Mg. The use of the known$$^{24}$$ ${}^{24}$ strength and the measured$$\rho ^2(E0, 0^+_2 \rightarrow 0^+_{gs})$$ ${\rho}^{2}(E0,{0}_{2}^{+}\to {0}_{\mathrm{gs}}^{+})$ branching ratio of the 10.712 MeV$$B(M1, 1^+ \rightarrow 0^+_2)/B(M1, 1^+ \rightarrow 0^+_{gs})$$ $B(M1,{1}^{+}\to {0}_{2}^{+})/B(M1,{1}^{+}\to {0}_{\mathrm{gs}}^{+})$ level allows, in a twostate mixing model, an extraction of the difference$$1^+$$ ${1}^{+}$ between the prolate groundstate structure and shapecoexisting superdeformed structure built upon the 6432keV$$\varDelta \beta _2^2$$ $\Delta {\beta}_{2}^{2}$ level.$$0^+_2$$ ${0}_{2}^{+}$ 
Abstract We present a proof of concept for a spectrally selective thermal midIR source based on nanopatterned graphene (NPG) with a typical mobility of CVDgrown graphene (up to 3000
), ensuring scalability to large areas. For that, we solve the electrostatic problem of a conducting hyperboloid with an elliptical wormhole in the presence of an$$\hbox {cm}^2\,\hbox {V}^{1}\,\hbox {s}^{1}$$ ${\text{cm}}^{2}\phantom{\rule{0ex}{0ex}}{\text{V}}^{1}\phantom{\rule{0ex}{0ex}}{\text{s}}^{1}$inplane electric field. The localized surface plasmons (LSPs) on the NPG sheet, partially hybridized with graphene phonons and surface phonons of the neighboring materials, allow for the control and tuning of the thermal emission spectrum in the wavelength regime from to 12$$\lambda =3$$ $\lambda =3$ m by adjusting the size of and distance between the circular holes in a hexagonal or square lattice structure. Most importantly, the LSPs along with an optical cavity increase the emittance of graphene from about 2.3% for pristine graphene to 80% for NPG, thereby outperforming stateoftheart pristine graphene light sources operating in the nearinfrared by at least a factor of 100. According to our COMSOL calculations, a maximum emission power per area of$$\upmu$$ $\mu $ W/$$11\times 10^3$$ $11\times {10}^{3}$ at$$\hbox {m}^2$$ ${\text{m}}^{2}$ K for a bias voltage of$$T=2000$$ $T=2000$ V is achieved by controlling the temperature of the hot electrons through the Joule heating. By generalizing Planck’s theory to any grey body and deriving the completely general nonlocal fluctuationdissipation theorem with nonlocal response of surface plasmons in the random phase approximation, we show that the coherence length of the graphene plasmons and the thermally emitted photons can be as large as 13$$V=23$$ $V=23$ m and 150$$\upmu$$ $\mu $ m, respectively, providing the opportunity to create phased arrays made of nanoantennas represented by the holes in NPG. The spatial phase variation of the coherence allows for beamsteering of the thermal emission in the range between$$\upmu$$ $\mu $ and$$12^\circ$$ ${12}^{\circ}$ by tuning the Fermi energy between$$80^\circ$$ ${80}^{\circ}$ eV and$$E_F=1.0$$ ${E}_{F}=1.0$ eV through the gate voltage. Our analysis of the nonlocal hydrodynamic response leads to the conjecture that the diffusion length and viscosity in graphene are frequencydependent. Using finitedifference time domain calculations, coupled mode theory, and RPA, we develop the model of a midIR light source based on NPG, which will pave the way to graphenebased optical midIR communication, midIR color displays, midIR spectroscopy, and virus detection.$$E_F=0.25$$ ${E}_{F}=0.25$ 
Abstract We introduce a family of Finsler metrics, called the
Fisher–Rao metrics$$L^p$$ ${L}^{p}$ , for$$F_p$$ ${F}_{p}$ , which generalizes the classical Fisher–Rao metric$$p\in (1,\infty )$$ $p\in (1,\infty )$ , both on the space of densities$$F_2$$ ${F}_{2}$ and probability densities$${\text {Dens}}_+(M)$$ ${\text{Dens}}_{+}\left(M\right)$ . We then study their relations to the Amari–C̆encov$${\text {Prob}}(M)$$ $\text{Prob}\left(M\right)$ connections$$\alpha $$ $\alpha $ from information geometry: on$$\nabla ^{(\alpha )}$$ ${\nabla}^{\left(\alpha \right)}$ , the geodesic equations of$${\text {Dens}}_+(M)$$ ${\text{Dens}}_{+}\left(M\right)$ and$$F_p$$ ${F}_{p}$ coincide, for$$\nabla ^{(\alpha )}$$ ${\nabla}^{\left(\alpha \right)}$ . Both are pullbacks of canonical constructions on$$p = 2/(1\alpha )$$ $p=2/(1\alpha )$ , in which geodesics are simply straight lines. In particular, this gives a new variational interpretation of$$L^p(M)$$ ${L}^{p}\left(M\right)$ geodesics as being energy minimizing curves. On$$\alpha $$ $\alpha $ , the$${\text {Prob}}(M)$$ $\text{Prob}\left(M\right)$ and$$F_p$$ ${F}_{p}$ geodesics can still be thought as pullbacks of natural operations on the unit sphere in$$\nabla ^{(\alpha )}$$ ${\nabla}^{\left(\alpha \right)}$ , but in this case they no longer coincide unless$$L^p(M)$$ ${L}^{p}\left(M\right)$ . Using this transformation, we solve the geodesic equation of the$$p=2$$ $p=2$ connection by showing that the geodesic are pullbacks of projections of straight lines onto the unit sphere, and they always cease to exists after finite time when they leave the positive part of the sphere. This unveils the geometric structure of solutions to the generalized Proudman–Johnson equations, and generalizes them to higher dimensions. In addition, we calculate the associate tensors of$$\alpha $$ $\alpha $ , and study their relation to$$F_p$$ ${F}_{p}$ .$$\nabla ^{(\alpha )}$$ ${\nabla}^{\left(\alpha \right)}$ 
Abstract Let
be a positive map from the$$\phi $$ $\varphi $ matrices$$n\times n$$ $n\times n$ to the$$\mathcal {M}_n$$ ${M}_{n}$ matrices$$m\times m$$ $m\times m$ . It is known that$$\mathcal {M}_m$$ ${M}_{m}$ is 2positive if and only if for all$$\phi $$ $\varphi $ and all strictly positive$$K\in \mathcal {M}_n$$ $K\in {M}_{n}$ ,$$X\in \mathcal {M}_n$$ $X\in {M}_{n}$ . This inequality is not generally true if$$\phi (K^*X^{1}K) \geqslant \phi (K)^*\phi (X)^{1}\phi (K)$$ $\varphi \left({K}^{\ast}{X}^{1}K\right)\u2a7e\varphi {\left(K\right)}^{\ast}\varphi {\left(X\right)}^{1}\varphi \left(K\right)$ is merely a Schwarz map. We show that the corresponding tracial inequality$$\phi $$ $\varphi $ holds for a wider class of positive maps that is specified here. We also comment on the connections of this inequality with various monotonicity statements that have found wide use in mathematical physics, and apply it, and a close relative, to obtain some new, definitive results.$${{\,\textrm{Tr}\,}}[\phi (K^*X^{1}K)] \geqslant {{\,\textrm{Tr}\,}}[\phi (K)^*\phi (X)^{1}\phi (K)]$$ $\phantom{\rule{0ex}{0ex}}\text{Tr}\phantom{\rule{0ex}{0ex}}\left[\varphi \left({K}^{\ast}{X}^{1}K\right)\right]\u2a7e\phantom{\rule{0ex}{0ex}}\text{Tr}\phantom{\rule{0ex}{0ex}}\left[\varphi {\left(K\right)}^{\ast}\varphi {\left(X\right)}^{1}\varphi \left(K\right)\right]$ 
Abstract The preALPACA (Alaskan Layered Pollution And Chemical Analysis) 2019 winter campaign took place in Fairbanks, Alaska, in November–December 2019. One objective of the campaign was to study the lifecycle of surfacebased temperature inversions and the associated surface energy budget changes. Several instruments, including a 4component radiometer and sonic anemometer were deployed in the open, snowcovered University of Alaska Fairbanks (UAF) Campus Agricultural Field. A local flow from a connecting valley occurs at this site. This flow is characterized by locally elevated wind speeds (greater than 3 m s
) under clearsky conditions and a northwesterly direction. It is notably different to the wind observed at the airport more than 3.5 km to the southwest. The surface energy budget at the UAF Field site exhibits two preferential modes. In the first mode, turbulent sensible heat and net longwave fluxes are close to 0 W m$$^{1}$$ ${}^{1}$ , linked to the presence of clouds and generally low winds. In the second, the net longwave flux is around − 50 W m$$^{2}$$ ${}^{2}$ and the turbulent sensible heat flux is around 15 W m$$^{2}$$ ${}^{2}$ , linked to clear skies and elevated wind speeds. The development of surfacebased temperature inversions at the field is hindered compared to the airport because the local flow sustains vertical mixing. In this second mode the residual of the surface energy budget is large, possibly due to horizontal temperature advection.$$^{2}$$ ${}^{2}$