skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Machine Learning Solutions to Regional Surface Ocean δ 18 O‐Salinity Relationships for Paleoclimatic Reconstruction
Abstract Stable isotope‐based reconstructions of past ocean salinity and hydroclimate depend on accurate, regionally constrained relationships between the stable oxygen isotopic composition of seawater (δ18Osw) and salinity in the surface ocean. An increasing number of δ18Oswobservations suggest greater spatial variability in this relationship than previously considered, highlighting the need to reassess these relationships on a global scale. Here, we use available, paired δ18Oswand salinity data (N = 11,119) to create global interpolations of each variable. We then use a self‐organizing map, a specialized form of machine learning, to define 19 regions with unique δ18Osw‐salinity relationships in the surface (<50 m) ocean. Inclusion of atmospheric moisture‐related variables and oceanic tracer data in additional self‐organizing map experiments indicates global surface δ18Osw‐salinity spatial patterns are strongly forced by the atmosphere, as the SOM spatial output is highly similar despite no overlapping input data. Our approach is a useful update to the previously delimited regions, and highlights the utility of neural network pattern extraction in spatiotemporally sparse data sets.  more » « less
Award ID(s):
1847791
PAR ID:
10501860
Author(s) / Creator(s):
; ;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Paleoceanography and Paleoclimatology
Volume:
38
Issue:
9
ISSN:
2572-4517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Tropical Pacific seawater and precipitation stable oxygen isotope data aid in understanding modern oceanic and atmospheric interactions, and these data are particularly valuable as they are archived in isotope‐based paleoclimate records. However, the absence of modern seawater isotope time series limits the ability to identify the atmospheric influences on these data, precluding robust paleoclimate interpretations. We present a new 10 year sub‐monthly record of seawater and precipitation stable oxygen isotope values (δ18Oswand δ18Op) from Koror, Palau. Our dataset indicates that temporally, δ18Oswis strongly influenced by local δ18Op.Both monthly δ18Oswand δ18Opare highly correlated with outgoing longwave radiation across the tropical Pacific, reflecting a Walker Circulation imprint on the surface ocean. Changes in the Palau δ18Osw—salinity relationship correspond to NINO3.4 variability, indicating a difference in how these variables record El Niño Southern Oscillation (ENSO) information, but demonstrating the utility of δ18Oswto reconstruct ENSO variability in the western tropical Pacific. 
    more » « less
  2. Abstract Early Late Cretaceous (∼90–100 Ma) Sea surface temperatures (SST) records suggest extremely warm Southern Hemisphere high latitudes and a meridional gradient as low as 5°C, attributed to elevated atmospheric CO2. Climate models have been unable to reproduce such extreme warmth, questioning model performance and/or the validity of SSTs reconstructions. Indeed, the latter partly rely on the measurement of oxygen isotopic composition of marine organisms (δ18Oc), a proxy that requires knowledge of the δ18O of past seawater (δ18Osw). Here we use the water isotope‐enabled Community Earth System Model (iCESM1.2) to investigate how paleogeography and pCO2affect δ18Oswdistribution and our understanding of Cenomanian‐Turonian SSTs. Our simulations suggest that the semi‐isolation of southern South Atlantic‐Indian Ocean resulted in locally very negative δ18Oswexplaining low δ18Ocmeasured on planktonic foraminifera. Accounting for this δ18Oswspatio‐temporal variability increases the estimated meridional temperature gradient by 5°C and narrows the gap between model and proxy‐based reconstructions. 
    more » « less
  3. IntroductionAstarte borealisholds great potential as an archive of seasonal paleoclimate, especially due to its long lifespan (several decades to more than a century) and ubiquitous distribution across high northern latitudes. Furthermore, recent work demonstrates that the isotope geochemistry of the aragonite shell is a faithful proxy of environmental conditions. However, the exceedingly slow growth rates ofA. borealisin some locations (<0.2mm/year) make it difficult to achieve seasonal resolution using standard micromilling techniques for conventional stable isotope analysis. Moreover, oxygen isotope (δ18O) records from species inhabiting brackish environments are notoriously difficult to use as paleoclimate archives because of the simultaneous variation in temperature and δ18Owatervalues. MethodsHere we use secondary ion mass spectrometry (SIMS) to microsample anA. borealisspecimen from the southern Baltic Sea, yielding 451 SIMS δ18Oshellvalues at sub-monthly resolution. ResultsSIMS δ18Oshellvalues exhibit a quasi-sinusoidal pattern with 24 local maxima and minima coinciding with 24 annual growth increments between March 1977 and the month before specimen collection in May 2001. DiscussionAge-modeled SIMS δ18Oshellvalues correlate significantly with bothin situtemperature measured from shipborne CTD casts (r2 = 0.52, p<0.001) and sea surface temperature from the ORAS5-SST global reanalysis product for the Baltic Sea region (r2 = 0.42, p<0.001). We observe the strongest correlation between SIMS δ18Oshellvalues and salinity when both datasets are run through a 36-month LOWESS function (r2 = 0.71, p < 0.001). Similarly, we find that LOWESS-smoothed SIMS δ18Oshellvalues exhibit a moderate correlation with the LOWESS-smoothed North Atlantic Oscillation (NAO) Index (r2 = 0.46, p<0.001). Change point analysis supports that SIMS δ18Oshellvalues capture a well-documented regime shift in the NAO circa 1989. We hypothesize that the correlation between the SIMS δ18Oshelltime series and the NAO is enhanced by the latter’s influence on the regional covariance of water temperature and δ18Owatervalues on interannual and longer timescales in the Baltic Sea. These results showcase the potential for SIMS δ18Oshellvalues inA. borealisshells to provide robust paleoclimate information regarding hydroclimate variability from seasonal to decadal timescales. 
    more » « less
  4. Abstract The stable isotope ratio of dissolved inorganic carbon (δ13C‐DIC) is a valuable tracer for investigating carbon cycling in aquatic environments. However, its potential remains underutilized due to limited data availability. Fewer than 15% of cruise samples are analyzed forδ13C‐DIC, as isotope analysis using isotope ratio mass spectrometry is labor‐intensive and restricted to onshore laboratories. We present over 3500δ13C‐DIC measurements from the 2023 Global Ocean Ship‐based Hydrographic Investigations Program A16N cruise in the North Atlantic. Notably, three‐quarters of these measurements were conducted onboard using a CO2extraction device coupled with cavity ring‐down spectroscopy, a more efficient and cost‐effective method. This extensive dataset providesδ13C‐DIC values with spatial resolution comparable to other ocean carbonate chemistry and biogeochemical parameters. This dataset supports improved quantification of anthropogenic CO2uptake and storage, and may facilitate the development of algorithms to estimateδ13C‐DIC in under sampled regions. 
    more » « less
  5. Abstract The Paleocene‐Eocene Thermal Maximum (PETM, ∼56 million years ago) is among the best‐studied climatic warming events in Earth history and is often compared to projected anthropogenic climate change. The PETM is characterized by a rapid negative carbon isotope excursion and global temperature increase of 4–5°C, accompanied by changes in spatial patterns of evaporation and precipitation in the global hydrologic cycle. Recent climate model reconstructions suggest a regionally complex and non‐linear response of one important aspect of global hydrology: enhanced moisture flux from the low‐latitude ocean. In this study, we use the elemental and stable isotope geochemistry of surface‐dwelling planktic foraminifera from a low‐latitude Atlantic deep‐sea sedimentary record (IODP Site 1258) to quantify changes in sea‐surface temperature (SST) and salinity. Foraminiferal Mg/Ca and δ18O values are interpreted with a Bayesian forward proxy system model to reconstruct how SST and salinity changed over the PETM at this site. These temperature and salinity reconstructions are then compared to recent climate model simulations of Eocene warming. Our reconstructions indicate °C of warming, in excellent agreement with estimates from other tropical locations and modeled PETM warmth. The regional change in salinity is not as straightforward, demonstrating a slight decrease at extremepCO2forcing (a reversal of the modeled sense of change under moderatepCO2forcing) in both model and proxy reconstructions. The cause of this non‐linear response is unclear but may relate to increased South American continental runoff or shifts in the Inter‐Tropical Convergence Zone. 
    more » « less