This content will become publicly available on March 1, 2025
Phytoliths preserved in soils and sediments can be used to provide unique insights into past vegetation dynamics in response to human and climate change. Phytoliths can reconstruct local vegetation in terrestrial soils where pollen grains typically decay, providing a range of markers (or lack thereof) that document past human activities. The ca. 6 million km2of Amazonian forests have relatively few baseline datasets documenting changes in phytolith representation across gradients of human disturbances. Here we show that phytolith assemblages vary on local scales across a gradient of (modern) human disturbance in tropical rainforests of Suriname. Detrended correspondence analysis showed that the phytolith assemblages found in managed landscapes (shifting cultivation and a garden), unmanaged forests, and abandoned reforesting sites were clearly distinguishable from intact forests and from each other. Our results highlight the sensitivity and potential of phytoliths to be used in reconstructing successional trajectories after site usage and abandonment. Percentages of specific phytolith morphotypes were also positively correlated with local palm abundances derived from UAV data, and with biomass estimated from MODIS satellite imagery. This baseline dataset provides an index of likely changes that can be observed at other sites that indicate past human activities and long-term forest recovery in Amazonia.
more » « less- Award ID(s):
- 2148984
- PAR ID:
- 10501868
- Publisher / Repository:
- Vegetation History and Archaeobotany
- Date Published:
- Journal Name:
- Vegetation History and Archaeobotany
- Volume:
- 33
- Issue:
- 2
- ISSN:
- 0939-6314
- Page Range / eLocation ID:
- 221 to 236
- Subject(s) / Keyword(s):
- Amazonia UAV imagery Human–environment interactions Suriname Palaeoecology Phytoliths
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Degree of canopy cover is linked to transpiration, carbon cycling and primary productivity of an ecosystem. In modern ecology, canopy structure is often quantified as Leaf Area Index (LAI), which is the amount of overstory leaf coverage relative to ground area. Although a key aspect of vegetation, the degree of canopy cover has proven difficult to reconstruct in deep time. One method, Reconstructed Leaf Area Index (rLAI), was developed to infer canopy structure using the relationship between non-grass leaf epidermal phytolith (plant biosilica) morphology, and leaf coverage in modern forests. This method leverages the observed correlation between epidermal phytolith size, shape (margin undulation), and light availability. When more light is available in a canopy, epidermal phytoliths tend to be smaller and less undulate, whereas less light availability is linked to larger and more undulate epidermal phytoliths. However, the calibration set used to develop this method was compiled from field sites and samples from localities in Costa Rica and it remains unclear how applicable it is to temperate North American fossil sites due to lack of data from relevant vegetation types and taxonomic differences between plant communities in the Neotropics vs. mid-latitude North America. For example, preliminary results measuring rLAI in phytolith assemblages from the Miocene of the North American Great Plains have yielded surprisingly high degrees of canopy density despite containing high relative abundances of open-habitat grasses. To test whether vegetational and taxonomic differences impact the calibration set, we constructed a new North American calibration using 24 quadrats from six sites, representing reasonable modern analogs for Miocene vegetation in eastern North America. Specifically, we sampled in Bennett Springs State Park in Lebanon, MO; Mark Twain National Forest in Rolla, MO; Tellico in Franklin, NC and Congaree National Park in Hopkins, SC. All sites include a range of canopy covers and vegetation types, from oak savannas and oak woodlands to mixed hardwood forests, pine savannas, and old growth bottomland forests. From each quadrat, we collected a soil sample and took hemispherical photos of the local canopy. From modern soil samples, biosilica was extracted in the lab, yielding phytolith assemblages which were scanned for epidermal phytoliths using a compound microscope. Recovered epidermal phytoliths size and margin undulation were measured and assemblage averages were used to predict measured LAI at each quadrat. Hemispherical photographs were processed using the software Gap Light Analyzer to obtain LAI values. We hypothesize there will be a linear relationship between actual LAI and LAI calculated from epidermal phytolith morphology, but its relationship will differ from that found in South America. Results will be used to reevaluate canopy coverage in sites within the Great Plains Miocene as well as applied to Pacific Northwest Miocene sites, both to understand changes to vegetation during global climatic events in their respective regions.more » « less
-
Marsh grasses have been used as efficient tools for phytoremediation and are known to play key roles in maintaining ecosystem functions by reducing the contamination of coastlines. This study was initiated to understand how human activities in wetlands can impact ion-heavy metal concentrations in relation to native and invasive marsh grasses. The study site, Blackbird Creek (BBC) is a tidal wetland that experiences agricultural, fishing, recreational, residential and other anthropogenic activities throughout the year. Heavy metals cadmium, arsenic, and lead in the soils and marsh grasses were monitored along with the ion compositions of soils. The main objective of this study was to understand if the marsh soils containing monotypic stands of native ( Spartina ) and non-native ( Phragmites ) vegetation display similar levels of heavy metals. Differences were observed in the concentrations of heavy metals at study sites with varying marsh vegetation types, and in soils containing vegetation and no vegetation. The soils with dense Spartina and Phragmites stands were anaerobic whereas soil at the boat ramp site was comparatively less anaerobic and also had increased levels of cadmium. Heavy metal concentrations in soil and Phragmites leaves were inversely correlated whereas they were positively correlated in Spartina sites. Electrical conductivity and pH levels in soil also showed increased cadmium and arsenic concentrations. These findings collectively infer that human activities and seasonal changes can increase soil complexities affecting the bioavailability of metals.more » « less
-
null (Ed.)Phytolith analysis is increasingly being applied in studies of Neotropical forest history and associated preColumbian human influences, especially in the Amazon Basin. In order to enlarge modern reference collections that are integral to these efforts, we analyzed phytoliths from 360 species of mainly eudicotyledons from 80 different families and 10 Arecaceae species. Many are native to Amazonia and have not been studied previously. Production and morphological characteristics of the phytoliths were assessed along with their survivability in ancient soils and sediments. Our analysis affirmed the validity of family- and genus-level diagnostic phytoliths from arboreal and other woody growth taxa uncovered in previous research. It also revealed new diagnostic phytoliths from both well- and little-studied families of importance in the Amazonian forest, and affirmed the utility of other types such as spheroids and sclereids for documenting arboreal/woody growth more generally in paleoecological research. Although where pollen is recovered it will continue to document a greater number of arboreal/woody species, phytoliths can identify a diversity of those taxa in the Amazonian and Neotropical forest at large–including when pollen does not– with family, genus, and possibly even species-level diagnostics.more » « less
-
Abstract Background Opal phytoliths (microscopic silica bodies produced in and between the cells of many plants) are a very resilient, often preserved type of plant microfossil. With the exponentially growing number of phytolith studies, standardization of phytolith morphotype names and description is essential. As a first effort in standardization, the International Code for Phytolith Nomenclature 1.0 was published by the ICPN Working Group in Annals of Botany in 2005. A decade of use of the code has prompted the need to revise, update, expand and improve it.
Scope ICPN 2.0 formulates the principles recommended for naming and describing phytolith morphotypes. According to these principles, it presents the revised names, diagnosis, images and drawings of the morphotypes that were included in ICPN 1.0, plus three others. These 19 morphotypes are those most commonly encountered in phytolith assemblages from modern and fossil soils, sediments and archaeological deposits. An illustrated glossary of common terms for description is also provided.
-
Phytoliths are opal silica particles formed within plant tis- sues. Diatoms are aquatic, single-celled photosynthetic algae with silica skeletons. Phytolith and diatom morphotypes vary depending on local environmental and climatic conditions and because their silicate structures preserve well, the study of phytolith and diatom morphotypes can be used to better understand paleoclimatic and paleoenvironmental dynam- ics and changes. This article presents original data from an 820cm-deep stratigraphy excavated at the Hazen diatomite deposits, a high-elevation desert paleolake in the Fernley Dis- trict, Northern Nevada, USA. The site has been studied for an assemblage of fossilized threespine stickleback, Gasterosteus doryssus , that reveal adaptive evolution. For this study, a to- tal of 157 samples were extracted at 20 cm intervals cover- ing approximately 24,500 years. After extraction, the samples were mounted on slides and viewed under 40 0-10 0 0x light microscopy, enabling classification of 14 phytolith and 45 di- atom morphotypes. Our data support paleoenvironmental re- constructions of the Hazen Miocene paleolake. ∗more » « less