skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sensitivity Analysis and Bayesian Calibration of OpenSees Models Using quoFEM
The NHERI SimCenter is a nine-year research project that aims to advance the simulation of natural hazard impact on the built environment and communities. The SimCenter is developing several open-source workflow applications and an underlying scientific application framework. All applications built on this framework provide an OpenSees interface that enables users to use their existing models in advanced simulation studies, such as local and regional performance assessment, and uncertainty quantification (UQ). SimCenter applications provide researchers an opportunity to explore different extensions of their models by lowering the interdisciplinary barrier and encouraging collaboration. Among the applications, quoFEM provides access to UQ analyses with an easy-to-use, standardized interface. This work demonstrates the research enabled by quoFEM through the example of model calibration using PM4Sand, a soil constitutive model available in OpenSees. After an initial sensitivity analysis, the model is calibrated using Bayesian inference based on observations of hysteretic soil response from cyclic direct simple shear tests. The uncertainty in the model parameters is used in forward propagation to explore plausible lateral spreading scenarios due to seismic liquefaction. The results demonstrate the utility of quoFEM to the OpenSees community as a UQ-enabling tool.  more » « less
Award ID(s):
2131111
PAR ID:
10501938
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer, Cham
Date Published:
Journal Name:
Proceedings of the 2022 Eurasian OpenSees Days
ISBN:
978-3-031-30125-4
Format(s):
Medium: X
Location:
https://doi.org/10.1007/978-3-031-30125-4_6
Sponsoring Org:
National Science Foundation
More Like this
  1. Wang, L; Zhang, JM; Wang, R (Ed.)
    Liquefaction under cyclic loads can be predicted through advanced (liquefaction-capable) material constitutive models. However, such constitutive models have several input parameters whose values are often unknown or imprecisely known, requiring calibration via lab/in-situ test data. This study proposes a Bayesian updating framework that integrates probabilistic calibration of the soil model and probabilistic prediction of lateral spreading due to seismic liquefaction. In particular, the framework consists of three main parts: (1) Parametric study based on global sensitivity analysis, (2) Bayesian calibration of the primary input parameters of the constitutive model, and (3) Forward uncertainty propagation through a computational model simulating the response of a soil column under earthquake loading. For demonstration, the PM4Sand model is adopted, and cyclic strength data of Ottawa F-65 sand from cyclic direct simple shear tests are utilized to calibrate the model. The three main uncertainty analyses are performed using quoFEM, a SimCenter open-source software application for uncertainty quantification and optimization in the field of natural hazard engineering. The results demonstrate the potential of the framework linked with quoFEM to perform calibration and uncertainty propagation using sophisticated simulation models that can be part of a performance-based design workflow. 
    more » « less
  2. Liquefaction under cyclic loads can be predicted through advanced (liquefaction-capable) material constitutive models. However, such constitutive models have several input parameters whose values are often unknown or imprecisely known, requiring calibration via lab/in-situ test data. This study proposes a Bayesian updating framework that integrates probabilistic calibration of the soil model and probabilistic prediction of lateral spreading due to seismic liquefaction. In particular, the framework consists of three main parts: (1) Parametric study based on global sensitivity analysis, (2) Bayesian calibration of the primary input parameters of the constitutive model, and (3) Forward uncertainty propagation through a computational model simulating the response of a soil column under earthquake loading. For demonstration, the PM4Sand model is adopted, and cyclic strength data of Ottawa F-65 sand from cyclic direct simple shear tests are utilized to calibrate the model. The three main uncertainty analyses are performed using quoFEM, a SimCenter open-source software application for uncertainty quantification and optimization in the field of natural hazard engineering. The results demonstrate the potential of the framework linked with quoFEM to perform calibration and uncertainty propagation using sophisticated simulation models that can be part of a performance-based design workflow. 
    more » « less
  3. Abstract Neural networks (NN) have become an important tool for prediction tasks—both regression and classification—in environmental science. Since many environmental-science problems involve life-or-death decisions and policy making, it is crucial to provide not only predictions but also an estimate of the uncertainty in the predictions. Until recently, very few tools were available to provide uncertainty quantification (UQ) for NN predictions. However, in recent years the computer-science field has developed numerous UQ approaches, and several research groups are exploring how to apply these approaches in environmental science. We provide an accessible introduction to six of these UQ approaches, then focus on tools for the next step, namely, to answer the question:Once we obtain an uncertainty estimate (using any approach), how do we know whether it is good or bad?To answer this question, we highlight four evaluation graphics and eight evaluation scores that are well suited for evaluating and comparing uncertainty estimates (NN based or otherwise) for environmental-science applications. We demonstrate the UQ approaches and UQ-evaluation methods for two real-world problems: 1) estimating vertical profiles of atmospheric dewpoint (a regression task) and 2) predicting convection over Taiwan based onHimawari-8satellite imagery (a classification task). We also provide Jupyter notebooks with Python code for implementing the UQ approaches and UQ-evaluation methods discussed herein. This article provides the environmental-science community with the knowledge and tools to start incorporating the large number of emerging UQ methods into their research. Significance StatementNeural networks are used for many environmental-science applications, some involving life-or-death decision-making. In recent years new methods have been developed to provide much-needed uncertainty estimates for NN predictions. We seek to accelerate the adoption of these methods in the environmental-science community with an accessible introduction to 1) methods for computing uncertainty estimates in NN predictions and 2) methods for evaluating such estimates. 
    more » « less
  4. Abstract Modeling and simulation for additive manufacturing (AM) are critical enablers for understanding process physics, conducting process planning and optimization, and streamlining qualification and certification. It is often the case that a suite of hierarchically linked (or coupled) simulation models is needed to achieve the above tasks, as the entirety of the complex physical phenomena relevant to the understanding of process-structure-property-performance relationships in the context of AM precludes the use of a single simulation framework. In this study using a Bayesian network approach, we address the important problem of conducting uncertainty quantification (UQ) analysis for multiple hierarchical models to establish process-microstructure relationships in laser powder bed fusion (LPBF) AM. More significantly, we present the framework to calibrate and analyze simulation models that have experimentally unmeasurable variables, which are quantities of interest predicted by an upstream model and deemed necessary for the downstream model in the chain. We validate the framework using a case study on predicting the microstructure of a binary nickel-niobium alloy processed using LPBF as a function of processing parameters. Our framework is shown to be able to predict segregation of niobium with up to 94.3% prediction accuracy on test data. 
    more » « less
  5. Quantifying the impact of parametric and model-form uncertainty on the predictions of stochastic models is a key challenge in many applications. Previous work has shown that the relative entropy rate is an effective tool for deriving path-space uncertainty quantification (UQ) bounds on ergodic averages. In this work we identify appropriate information-theoretic objects for a wider range of quantities of interest on path-space, such as hitting times and exponentially discounted observables, and develop the corresponding UQ bounds. In addition, our method yields tighter UQ bounds, even in cases where previous relative-entropy-based methods also apply, e.g. , for ergodic averages. We illustrate these results with examples from option pricing, non-reversible diffusion processes, stochastic control, semi-Markov queueing models, and expectations and distributions of hitting times. 
    more » « less