skip to main content

This content will become publicly available on March 1, 2023

Title: Bayesian Calibration of Multiple Coupled Simulation Models for Metal Additive Manufacturing: A Bayesian Network Approach
Abstract Modeling and simulation for additive manufacturing (AM) are critical enablers for understanding process physics, conducting process planning and optimization, and streamlining qualification and certification. It is often the case that a suite of hierarchically linked (or coupled) simulation models is needed to achieve the above tasks, as the entirety of the complex physical phenomena relevant to the understanding of process-structure-property-performance relationships in the context of AM precludes the use of a single simulation framework. In this study using a Bayesian network approach, we address the important problem of conducting uncertainty quantification (UQ) analysis for multiple hierarchical models to establish process-microstructure relationships in laser powder bed fusion (LPBF) AM. More significantly, we present the framework to calibrate and analyze simulation models that have experimentally unmeasurable variables, which are quantities of interest predicted by an upstream model and deemed necessary for the downstream model in the chain. We validate the framework using a case study on predicting the microstructure of a binary nickel-niobium alloy processed using LPBF as a function of processing parameters. Our framework is shown to be able to predict segregation of niobium with up to 94.3% prediction accuracy on test data.
; ; ; ; ; ; ;
Award ID(s):
1846676 1545403
Publication Date:
Journal Name:
ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg
Sponsoring Org:
National Science Foundation
More Like this
  1. Purpose There is recent emphasis on designing new materials and alloys specifically for metal additive manufacturing (AM) processes, in contrast to AM of existing alloys that were developed for other traditional manufacturing methods involving considerably different physics. Process optimization to determine processing recipes for newly developed materials is expensive and time-consuming. The purpose of the current work is to use a systematic printability assessment framework developed by the co-authors to determine windows of processing parameters to print defect-free parts from a binary nickel-niobium alloy (NiNb5) using laser powder bed fusion (LPBF) metal AM. Design/methodology/approach The printability assessment framework integrates analyticalmore »thermal modeling, uncertainty quantification and experimental characterization to determine processing windows for NiNb5 in an accelerated fashion. Test coupons and mechanical test samples were fabricated on a ProX 200 commercial LPBF system. A series of density, microstructure and mechanical property characterization was conducted to validate the proposed framework. Findings Near fully-dense parts with more than 99% density were successfully printed using the proposed framework. Furthermore, the mechanical properties of as-printed parts showed low variability, good tensile strength of up to 662 MPa and tensile ductility 51% higher than what has been reported in the literature. Originality/value Although many literature studies investigate process optimization for metal AM, there is a lack of a systematic printability assessment framework to determine manufacturing process parameters for newly designed AM materials in an accelerated fashion. Moreover, the majority of existing process optimization approaches involve either time- and cost-intensive experimental campaigns or require the use of proprietary computational materials codes. Through the use of a readily accessible analytical thermal model coupled with statistical calibration and uncertainty quantification techniques, the proposed framework achieves both efficiency and accessibility to the user. Furthermore, this study demonstrates that following this framework results in printed parts with low degrees of variability in their mechanical properties.« less
  2. The presence of various uncertainty sources in metal-based additive manufacturing (AM) process prevents producing AM products with consistently high quality. Using electron beam melting (EBM) of Ti-6Al-4V as an example, this paper presents a data-driven framework for process parameters optimization using physics-informed computer simulation models. The goal is to identify a robust manufacturing condition that allows us to constantly obtain equiaxed materials microstructures under uncertainty. To overcome the computational challenge in the robust design optimization under uncertainty, a two-level data-driven surrogate model is constructed based on the simulation data of a validated high-fidelity multiphysics AM simulation model. The robust designmore »result, indicating a combination of low preheating temperature, low beam power, and intermediate scanning speed, was acquired enabling the repetitive production of equiaxed structure products as demonstrated by physics-based simulations. Global sensitivity analysis at the optimal design point indicates that among the studied six noise factors, specific heat capacity and grain growth activation energy have the largest impact on the microstructure variation. Through this exemplar process optimization, the current study also demonstrates the promising potential of the presented approach in facilitating other complicate AM process optimizations, such as robust designs in terms of porosity control or direct mechanical property control.« less
  3. Abstract

    The goal of this work is to predict the effect of part geometry and process parameters on the instantaneous spatial distribution of heat, called the heat flux or thermal history, in metal parts as they are being built layer-by-layer using additive manufacturing (AM) processes. In pursuit of this goal, the objective of this work is to develop and verify a graph theory-based approach for predicting the heat flux in metal AM parts. This objective is consequential to overcome the current poor process consistency and part quality in AM. One of the main reasons for poor part quality in metalmore »AM processes is ascribed to the heat flux in the part. For instance, constrained heat flux because of ill-considered part design leads to defects, such as warping and thermal stress-induced cracking. Existing non-proprietary approaches to predict the heat flux in AM at the part-level predominantly use mesh-based finite element analyses that are computationally tortuous — the simulation of a few layers typically requires several hours, if not days. Hence, to alleviate these challenges in metal AM processes, there is a need for efficient computational thermal models to predict the heat flux, and thereby guide part design and selection of process parameters instead of expensive empirical testing. Compared to finite element analysis techniques, the proposed mesh-free graph theory-based approach facilitates layer-by-layer simulation of the heat flux within a few minutes on a desktop computer. To explore these assertions we conducted the following two studies: (1) comparing the heat diffusion trends predicted using the graph theory approach, with finite element analysis and analytical heat transfer calculations based on Green’s functions for an elementary cuboid geometry which is subjected to an impulse heat input in a certain part of its volume, and (2) simulating the layer-by-layer deposition of three part geometries in a laser powder bed fusion metal AM process with: (a) Goldak’s moving heat source finite element method, (b) the proposed graph theory approach, and (c) further comparing the heat flux predictions from the last two approaches with a commercial solution. From the first study we report that the heat flux trend approximated by the graph theory approach is found to be accurate within 5% of the Green’s functions-based analytical solution (in terms of the symmetric mean absolute percentage error). Results from the second study show that the heat flux trends predicted for the AM parts using graph theory approach agrees with finite element analysis with error less than 15%. More pertinently, the computational time for predicting the heat flux was significantly reduced with graph theory, for instance, in one of the AM case studies the time taken to predict the heat flux in a part was less than 3 minutes using the graph theory approach compared to over 3 hours with finite element analysis. While this paper is restricted to theoretical development and verification of the graph theory approach for heat flux prediction, our forthcoming research will focus on experimental validation through in-process sensor-based heat flux measurements.

    « less
  4. There are significant disparities between the conferring of science, technology, engineering, and mathematics (STEM) bachelor’s degrees to minoritized groups and the number of STEM faculty that represent minoritized groups at four-year predominantly White institutions (PWIs). Studies show that as of 2019, African American faculty at PWIs have increased by only 2.3% in the last 20 years. This study explores the ways in which this imbalance affects minoritized students in engineering majors. Our research objective is to describe the ways in which African American students navigate their way to success in an engineering program at a PWI where the minoritized facultymore »representation is less than 10%. In this study, we define success as completion of an undergraduate degree and matriculation into a Ph.D. program. Research shows that African American students struggle with feeling like the “outsider within” in graduate programs and that the engineering culture can permeate from undergraduate to graduate programs. We address our research objective by conducting interviews using navigational capital as our theoretical framework, which can be defined as resilience, academic invulnerability, and skills. These three concepts come together to denote the journey of an individual as they achieve success in an environment not created with them in mind. Navigational capital has been applied in education contexts to study minoritized groups, and specifically in engineering education to study the persistence of students of color. Research on navigational capital often focuses on how participants acquire resources from others. There is a limited focus on the experience of the student as the individual agent exercising their own navigational capital. Drawing from and adapting the framework of navigational capital, this study provides rich descriptions of the lived experiences of African American students in an engineering program at a PWI as they navigated their way to academic success in a system that was not designed with them in mind. This pilot study took place at a research-intensive, land grant PWI in the southeastern United States. We recruited two students who identify as African American and are in the first year of their Ph.D. program in an engineering major. Our interview protocol was adapted from a related study about student motivation, identity, and sense of belonging in engineering. After transcribing interviews with these participants, we began our qualitative analysis with a priori coding, drawing from the framework of navigational capital, to identify the experiences, connections, involvement, and resources the participants tapped into as they maneuvered their way to success in an undergraduate engineering program at a PWI. To identify other aspects of the participants’ experiences that were not reflected in that framework, we also used open coding. The results showed that the participants tapped into their navigational capital when they used experiences, connections, involvement, and resources to be resilient, academically invulnerable, and skillful. They learned from experiences (theirs or others’), capitalized on their connections, positioned themselves through involvement, and used their resources to achieve success in their engineering program. The participants identified their experiences, connections, and involvement. For example, one participant who came from a blended family (African American and White) drew from the experiences she had with her blended family. Her experiences helped her to understand the cultures of Black and White people. She was able to turn that into a skill to connect with others at her PWI. The point at which she took her familial experiences to use as a skill to maneuver her way to success at a PWI was an example of her navigational capital. Another participant capitalized on his connections to develop academic invulnerability. He was able to build his connections by making meaningful relationships with his classmates. He knew the importance of having reliable people to be there for him when he encountered a topic he did not understand. He cultivated an environment through relationships with classmates that set him up to achieve academic invulnerability in his classes. The participants spoke least about how they used their resources. The few mentions of resources were not distinct enough to make any substantial connection to the factors that denote navigational capital. The participants spoke explicitly about the PWI culture in their engineering department. From open coding, we identified the theme that participants did not expect to have role models in their major that looked like them and went into their undergraduate experience with the understanding that they will be the distinct minority in their classes. They did not make notable mention of how a lack of minority faculty affected their success. Upon acceptance, they took on the challenge of being a racial minority in exchange for a well-recognized degree they felt would have more value compared to engineering programs at other universities. They identified ways they maneuvered around their expectation that they would not have representative role models through their use of navigational capital. Integrating knowledge from the framework of navigational capital and its existing applications in engineering and education allows us the opportunity to learn from African American students that have succeeded in engineering programs with low minority faculty representation. The future directions of this work are to outline strategies that could enhance the path of minoritized engineering students towards success and to lay a foundation for understanding the use of navigational capital by minoritized students in engineering at PWIs. Students at PWIs can benefit from understanding their own navigational capital to help them identify ways to successfully navigate educational institutions. Students’ awareness of their capacity to maintain high levels of achievement, their connections to networks that facilitate navigation, and their ability to draw from experiences to enhance resilience provide them with the agency to unleash the invisible factors of their potential to be innovators in their collegiate and work environments.« less
  5. Abstract Background Protein kinases are a large family of druggable proteins that are genomically and proteomically altered in many human cancers. Kinase-targeted drugs are emerging as promising avenues for personalized medicine because of the differential response shown by altered kinases to drug treatment in patients and cell-based assays. However, an incomplete understanding of the relationships connecting genome, proteome and drug sensitivity profiles present a major bottleneck in targeting kinases for personalized medicine. Results In this study, we propose a multi-component Quantitative Structure–Mutation–Activity Relationship Tests (QSMART) model and neural networks framework for providing explainable models of protein kinase inhibition and drugmore »response ( $$\hbox {IC}_{50}$$ IC 50 ) profiles in cell lines. Using non-small cell lung cancer as a case study, we show that interaction terms that capture associations between drugs, pathways, and mutant kinases quantitatively contribute to the response of two EGFR inhibitors (afatinib and lapatinib). In particular, protein–protein interactions associated with the JNK apoptotic pathway, associations between lung development and axon extension, and interaction terms connecting drug substructures and the volume/charge of mutant residues at specific structural locations contribute significantly to the observed $$\hbox {IC}_{50}$$ IC 50 values in cell-based assays. Conclusions By integrating multi-omics data in the QSMART model, we not only predict drug responses in cancer cell lines with high accuracy but also identify features and explainable interaction terms contributing to the accuracy. Although we have tested our multi-component explainable framework on protein kinase inhibitors, it can be extended across the proteome to investigate the complex relationships connecting genotypes and drug sensitivity profiles.« less