skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Auto Annotation of Linguistic Features for Audio Deepfake Discernment
We present an innovative approach to auto-annotate Expert Defined Linguistic Features (EDLFs) as subsequences in audio time series to improve audio deepfake discernment. In our prior work, these linguistic features – namely pitch, pause, breath, consonant release bursts, and overall audio quality, labeled by experts on the entire audio signal – have been shown to improve detection of audio deepfakes with AI algorithms. We now expand our approach to pilot a way to auto annotate subsequences in the time series that correspond to each EDLF. We developed an ensemble of discords, i.e. anomalies in time series, detected using matrix profiles across multiple discord lengths to identify multiple types of EDLFs. Working closely with linguistic experts, we evaluated where discords overlapped with EDLFs in the audio signal data. Our ensemble method to detect discords across multiple discord lengths achieves much higher accuracy than using individual discord lengths to detect EDLFs. With this approach and domain validation we establish the feasibility of using time series subsequences to capture EDLFs to supplement annotation by domain experts, for improved audio deepfake detection.  more » « less
Award ID(s):
2210011
PAR ID:
10502122
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Association for the Advancement of Artificial Intelligence
Date Published:
Journal Name:
Proceedings of the AAAI Symposium Series
Volume:
2
Issue:
1
ISSN:
2994-4317
Page Range / eLocation ID:
242 to 244
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Time series anomaly detection remains a perennially important research topic. If anything, it is a task that has become increasingly important in the burgeoning age of IoT. While there are hundreds of anomaly detection methods in the literature, one definition, time series discords, has emerged as a competitive and popular choice for practitioners. Time series discords are subsequences of a time series that are maximally far away from their nearest neighbors. Perhaps the most attractive feature of discords is their simplicity. Unlike many parameter laden methods, discords require only a single parameter to be set by the user: the subsequence length. In this work we argue that the utility of discords is reduced by sensitivity to this single user choice. The obvious solution to this problem, computing discords of all lengths then selecting the best anomalies (under some measure), seems to be computationally untenable. However, in this work we introduce MERLIN, an algorithm that can efficiently and exactly find discords of all lengths in massive time series archives. 
    more » « less
  2. The burgeoning age of IoT has reinforced the need for robust time series anomaly detection. While there are hundreds of anomaly detection methods in the literature, one definition, time series discords, has emerged as a competitive and popular choice for practitioners. Time series discords are subsequences of a time series that are maximally far away from their nearest neighbors. Perhaps the most attractive feature of discords is their simplicity. Unlike many of the parameter-laden methods proposed, discords require only a single parameter to be set by the user: the subsequence length. We believe that the utility of discords is reduced by sensitivity to even this single user choice. The obvious solution to this problem, computing discords of all lengths then selecting the best anomalies (under some measure), appears at first glance to be computationally untenable. However, in this work we discuss MERLIN, a recently introduced algorithm that can efficiently and exactly find discords of all lengths in massive time series archives. By exploiting computational redundancies, MERLIN is two orders of magnitude faster than comparable algorithms. Moreover, we show that by exploiting a little-known indexing technique called Orchard’s algorithm, we can create a new algorithm called MERLIN++, which is an order of magnitude faster than MERLIN, yet produces identical results. We demonstrate the utility of our ideas on a large and diverse set of experiments and show that MERLIN++ can discover subtle anomalies that defy existing algorithms or even careful human inspection. We further compare to five state-of-the-art rival methods, on the largest benchmark dataset for this task, and show that MERLIN++ is superior in terms of accuracy and speed. 
    more » « less
  3. Editor in Chief: Johannes Fürnkranz (Ed.)
    Time series data remains a perennially important datatype considered in data mining. In the last decade there has been an increasing realization that time series data can be best understood by reasoning about time series subsequences on the basis of their similarity to other subsequences: the two most familiar such time series concepts being motifs and discords. Time series motifs refer to two particularly close subsequences, whereas time series discords indicate subsequences that are far from their nearest neighbors. However, we argue that it can sometimes be useful to simultaneously reason about a subsequence’s closeness to certain data and its distance to other data. In this work we introduce a novel primitive called the Contrast Profile that allows us to efficiently compute such a definition in a principled way. As we will show, the Contrast Profile has many downstream uses, including anomaly detection, data exploration, and preprocessing unstructured data for classification. We demonstrate the utility of the Contrast Profile by showing how it allows end-to-end classification in datasets with tens of billions of datapoints, and how it can be used to explore datasets and reveal subtle patterns that might otherwise escape our attention. Moreover, we demonstrate the generality of the Contrast Profile by presenting detailed case studies in domains as diverse as seismology, animal behavior, and cardiology. 
    more » « less
  4. By employing generative deep learning techniques, Deepfakes are created with the intent to create mistrust in society, manipulate public opinion and political decisions, and for other malicious purposes such as blackmail, scamming, and even cyberstalking. As realistic deepfake may involve manipulation of either audio or video or both, thus it is important to explore the possibility of detecting deepfakes through the inadequacy of generative algorithms to synchronize audio and visual modalities. Prevailing performant methods, either detect audio or video cues for deepfakes detection while few ensemble the results after predictions on both modalities without inspecting relationship between audio and video cues. Deepfake detection using joint audiovisual representation learning is not explored much. Therefore, this paper proposes a unified multimodal framework, Multimodaltrace, which extracts learned channels from audio and visual modalities, mixes them independently in IntrAmodality Mixer Layer (IAML), processes them jointly in IntErModality Mixer Layers (IEML) from where it is fed to multilabel classification head. Empirical results show the effectiveness of the proposed framework giving state-of-the-art accuracy of 92.9% on the FakeAVCeleb dataset. The cross-dataset evaluation of the proposed framework on World Leaders and Presidential Deepfake Detection Datasets gives an accuracy of 83.61% and 70% respectively. The study also provides insights into how the model focuses on different parts of audio and visual features through integrated gradient analysis 
    more » « less
  5. Audio deepfakes represent a rising threat to trust in our daily communications. In response to this, the research community has developed a wide array of detection techniques aimed at preventing such attacks from deceiving users. Unfortunately, the creation of these defenses has generally overlooked the most important element of the system - the user themselves. As such, it is not clear whether current mechanisms augment, hinder, or simply contradict human classification of deepfakes. In this paper, we perform the first large-scale user study on deepfake detection. We recruit over 1,200 users and present them with samples from the three most widely-cited deepfake datasets. We then quantitatively compare performance and qualitatively conduct thematic analysis to motivate and understand the reasoning behind user decisions and differences from machine classifications. Our results show that users correctly classify human audio at significantly higher rates than machine learning models, and rely on linguistic features and intuition when performing classification. However, users are also regularly misled by pre-conceptions about the capabilities of generated audio (e.g., that accents and background sounds are indicative of humans). Finally, machine learning models suffer from significantly higher false positive rates, and experience false negatives that humans correctly classify when issues of quality or robotic characteristics are reported. By analyzing user behavior across multiple deepfake datasets, our study demonstrates the need to more tightly compare user and machine learning performance, and to target the latter towards areas where humans are less likely to successfully identify threats. 
    more » « less