skip to main content


This content will become publicly available on March 1, 2025

Title: Multiphysics monitoring of cementation operation: implications for wellbore integrity and hydrogeological characterization
Abstract

The application of optical fibers for assessing cemented wellbore’s integrity attracted considerable attention recently, because of low cost, decent temporal/spatial resolution and absence of downhole electronics. This study presents an integrated approach to compare measurements from distributed temperature sensing (DTS), distributed strain sensing (DSS) and fiber Bragg grating (FBG), at different stages of the wellbore cementation at Bedretto Underground Laboratory for Geosciences and Geoenergies. Before the cementation, the measurements from DTS provided information about the hydrogeological settings of the wellbore, including the major flow zones, and presence of a highly conductive hydraulic shortcut to a nearby wellbore. During the cement injection, the temperature sensors (DTS and temperature FBG) clearly detected the evolution of the top of the cement. While the mechanical deformation sensors (DSS and strain FBG) did not provide significant insights during this stage, their role became more pronounced in subsequent phases. Results show that the irregularities on the wall have minor influence on the thermo-mechanical response of the wellbore, both during and after cementation. After cementation, the temperature sensors (DTS and temperature FBG) traced different phases of cement-hardening process, while DSS measurements identified areas of major deformation, primarily in fracture/fault zones. It was also observed that localized elevation of temperature and extensional deformation along the wellbore during the cement-hardening are correlated with the presence of permeable structures, most likely due to continuous supply of water. Results of this study show that monitoring of the cemented wellbores using optical fibers, in particular during cement hardening, not only can be used to efficiently assess the wellbore integrity but also can provide us additional important information about the hydrogeological settings of the target reservoir volume.

 
more » « less
Award ID(s):
1832109 2243962 2243961 2243963
NSF-PAR ID:
10502389
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Environmental Earth Science
Date Published:
Journal Name:
Environmental Earth Sciences
Volume:
83
Issue:
5
ISSN:
1866-6280
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The individual effects of strain rate and temperature on the strain hardening rate of a quenched and partitioned steel have been examined. During quasistatic tests, resistive heating was used to simulate the deformation-induced heating that occurs during high-strain-rate deformation, while the deformation-induced martensitic transformation was tracked by a combination of x-ray and electron backscatter diffraction. Unique work hardening rates under various thermal–mechanical conditions are discussed, based on the balance between the concurrent dislocation slip and transformation-induced plasticity deformation mechanisms. The diffraction and strain hardening data suggest that the imposed strain rate and temperature exhibited dissonant influences on the martensitic phase transformation. Increasing the strain rate appeared to enhance the martensitic transformation, while increasing the temperature suppressed the martensitic transformation. 
    more » « less
  2. Structural integrity can be compromised by the simultaneous presence of mechanical loads and corrosive agents. This study investigates the complex interplay between corrosion and impact loads in steel plates, utilizing discrete Fiber Bragg Grating (FBG) and distributed Optical Frequency Domain Reflectometry (OFDR) sensing technology. Generalized fiber optic-based sensing models are developed to quantify corrosion severity and rate. The experimental study was conducted using twelve epoxy-coated steel plates equipped with FBG and OFDR sensors, covering scenarios of individual exposure to corrosion, impact loads, as well as their combination. Test results reveal that specimens subjected to combined conditioning exhibit more corrosion damage than those subjected to individual corrosion. Both pit depth and its growth rate were exacerbated due to the impact loads. The study demonstrates the potential of fiber optic sensors (FOSs) for real-time monitoring and assessment of structural health under different simultaneous multiple factors in challenging conditions. 
    more » « less
  3. We present a study of the mechanical behavior of planar fibrous mats stabilized by inter-fiber adhesion. Fibers of various degrees of tortuosity and of infinite and finite length are considered in separate models. Fibers are randomly distributed, are not cross-linked, and interact through adhesion and friction. The variation of structural parameters such as the mat thickness and the mean segment length between contacts along given fibers with the strength of adhesion is determined. These systems are largely dissipative in that most of the work performed during deformation is dissipated frictionally and only a small fraction is stored as strain energy. The response of the mats to tensile loading has three regimes: a short elastic regime in which no sliding at contacts is observed, a well-defined sliding regime characterized by strain hardening, and a rapid stiffening regime at larger strains. The third regime is due to the formation of stress paths after the fiber tortuosity is pulled out and is absent in mats of finite length fibers. Networks of finite length fibers lose stability during the second regime of deformation. The scaling of the yield stress, which characterizes the transition between the first and the second regimes, and of the second regime's strain hardening modulus, with system parameters such as the strength of adhesion and friction and the degree of fiber tortuosity are determined. The strength of mats of finite length fibers is also determined as a function of network parameters. These results are expected to become useful in the design of electrospun mats and other planar fibrous non-cross-linked networks. 
    more » « less
  4. This paper describes the main findings from an experimental investigation into local and overall strength and fracture behavior of a microstructurally flexible, quadruplex, high entropy alloy (HEA), Fe42Mn28Co10Cr15Si5 (in at%). The alloy consists of metastable face-centered cubic austenite (g), stable hexagonal epsilon martensite (ε), stable body-centered cubic ferrite (a), and stable tetragonal sigma (σ) phases. The overall behavior of the alloy in compression features a great deal of plasticity and strain hardening before fracture. While the contents of diffusion created a and σ phases remain constant during deformation, the fraction of ε increases at the expanse of g due to the diffusionless strain induced γ→ε phase transformation. High-throughput nanoindentation mapping is used to assess the mechanical hardness of individual phases contributing to the plasticity and hardening of the alloy. Increasing the fraction of the dislocated ε phase during deformation due to the transformation is found to act as a secondary source of hardening because g and ε exhibit similar hardness at a given strain level. While these two phases exhibit moderate hardening during plasticity, significant softening is observed in σ owing to the phase fragmentation. While the phase transformation mechanism facilitates accommodation of the plasticity, the primary source of strain hardening in the alloy is the refinement of the structure during the transformation inducing a dynamic Hall-Petch-type barrier effect. Results pertaining to the evolution of microstructure and local behavior of the alloy under compression are presented and discussed clarifying the origins of strain hardening. While good under compression, the alloy poorly behaves under tension. Fracture surfaces after tension feature brittle micromechanisms of fracture. Such behavior is attributed to the presence of the brittle σ phase. 
    more » « less
  5. Coastal bluff erosion and recession are among the common mechanisms altering the geomorphology of the coastline in California. The accelerated erosion rate increasingly threatens the stability of structures located on these bluffs. Previous researchers have investigated the effect of material properties and strength on the generation of the shear plane and failure modes of coastal bluffs and cliffs. Monitoring the morphology of the moderately cemented coastal bluffs with time has indicated that a comparison of material strength with the expected insitu minor principal stress distribution can be used as a criterion to assess bluff stability. However, the effect of varying factors such as cementation levels and bluff geometry and dimensions on stress distribution patterns and material properties that determine bluff failure susceptibility requires further investigation. While bond breakage and disturbance during sampling and transportation undermine the quality of recovered soil samples, artificial cementation methods (e.g., Portland cement) may not properly replicate the natural formation processes. Instead, microbially induced carbonate precipitation (MICP) is a ground improvement method that simulates the cementation processes that occur in natural geological settings. This method harnesses the activities of bacteria to generate cementitious precipitation among soil particles. The formation of the cementing agent improves the mechanical properties of the soil. In the past two decades, extensive studies have been devoted to understanding the cementation formation mechanism and the improvement of mechanical properties that can be used as a proxy for natural cemented soil for stability analysis. In the study presented herein, a series of FEM models were developed in SIGMA/W software. The effect of the different cementation levels and variation of bluff geometry on minor principal stress distribution was investigated. Results of the study demonstrated that although the cementation level of the materials determines the failure mode, the stress distribution mainly depends on the bluff geometry. The obtained results offer further insights into the failure mechanism of coastal bluffs as well as MICP-treated slopes for future field implementation of this soil improvement method. 
    more » « less