Poverty maps derived from satellite imagery are increasingly used to inform high-stakes policy decisions, such as the allocation of humanitarian aid and the distribution of government resources. Such poverty maps are typically constructed by training machine learning algorithms on a relatively modest amount of “ground truth” data from surveys, and then predicting poverty levels in areas where imagery exists but surveys do not. Using survey and satellite data from ten countries, this paper investigates disparities in representation, systematic biases in prediction errors, and fairness concerns in satellite-based poverty mapping across urban and rural lines, and shows how these phenomena affect the validity of policies based on predicted maps. Our findings highlight the importance of careful error and bias analysis before using satellite-based poverty maps in real-world policy decisions.
more »
« less
Fairness and representation in satellite-based poverty maps: Evidence of urban-rural disparities and their impacts on downstream policy
Poverty maps derived from satellite imagery are increasingly used to inform high-stakes policy decisions, such as the allocation of humanitarian aid and the distribution of government resources. Such poverty maps are typically constructed by training machine learning algorithms on a relatively modest amount of “ground truth” data from surveys, and then predicting poverty levels in areas where imagery exists but surveys do not. Using survey and satellite data from ten countries, this paper investigates disparities in representation, systematic biases in prediction errors, and fairness concerns in satellite-based poverty mapping across urban and rural lines, and shows how these phenomena affect the validity of policies based on predicted maps. Our findings highlight the importance of careful error and bias analysis before using satellite-based poverty maps in real-world policy decisions.
more »
« less
- Award ID(s):
- 1942702
- PAR ID:
- 10502561
- Publisher / Repository:
- arXiv
- Date Published:
- Journal Name:
- 32nd International Joint Conference on Artificial Intelligence (IJCAI 2023)
- Format(s):
- Medium: X
- Location:
- Cape Town, South Africa
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hundreds of millions of poor families receive some form of targeted social assistance. Many of these antipoverty programs involve some degree of geographic targeting, where aid is prioritized to the poorest regions of the country. However, policy makers in many low-resource settings lack the disaggregated poverty data required to make effective geographic targeting decisions. Using several independent datasets from Nigeria, this paper shows that high-resolution poverty maps, constructed by applying machine learning algorithms to satellite imagery and other nontraditional geospatial data, can improve the targeting of government cash transfers to poor families. Specifically, we find that geographic targeting relying on machine learning–based poverty maps can reduce errors of exclusion and inclusion relative to geographic targeting based on recent nationally representative survey data. This result holds for antipoverty programs that target both the poor and the extreme poor and for initiatives of varying sizes. We also find no evidence that machine learning–based maps increase targeting disparities by demographic groups, such as gender or religion. Based in part on these findings, the Government of Nigeria used this approach to geographically target emergency cash transfers in response to the COVID-19 pandemic.more » « less
-
Many critical policy decisions, from strategic investments to the allocation of humanitarian aid, rely on data about the geographic distribution of wealth and poverty. Yet many poverty maps are out of date or exist only at very coarse levels of granularity. Here we develop microestimates of the relative wealth and poverty of the populated surface of all 135 low- and middle-income countries (LMICs) at 2.4 km resolution. The estimates are built by applying machine-learning algorithms to vast and heterogeneous data from satellites, mobile phone networks, and topographic maps, as well as aggregated and deidentified connectivity data from Facebook. We train and calibrate the estimates using nationally representative household survey data from 56 LMICs and then validate their accuracy using four independent sources of household survey data from 18 countries. We also provide confidence intervals for each microestimate to facilitate responsible downstream use. These estimates are provided free for public use in the hope that they enable targeted policy response to the COVID-19 pandemic, provide the foundation for insights into the causes and consequences of economic development and growth, and promote responsible policymaking in support of sustainable development.more » « less
-
Accurate mapping of nearshore bathymetry is essential for coastal management, navigation, and environmental monitoring. Traditional bathymetric mapping methods such as sonar surveys and LiDAR are often time-consuming and costly. This paper introduces BathyFormer, a novel vision transformer- and encoder-based deep learning model designed to estimate nearshore bathymetry from high-resolution multispectral satellite imagery. This methodology involves training the BathyFormer model on a dataset comprising satellite images and corresponding bathymetric data obtained from the Continuously Updated Digital Elevation Model (CUDEM). The model learns to predict water depths by analyzing the spectral signatures and spatial patterns present in the multispectral imagery. Validation of the estimated bathymetry maps using independent hydrographic survey data produces a root mean squared error (RMSE) ranging from 0.55 to 0.73 m at depths of 2 to 5 m across three different locations within the Chesapeake Bay, which were independent of the training set. This approach shows significant promise for large-scale, cost-effective shallow water nearshore bathymetric mapping, providing a valuable tool for coastal scientists, marine planners, and environmental managers.more » « less
-
Abstract As whales recover from commercial exploitation, they are increasing in abundance in habitats that they have been absent from for decades. However, studying the recovery and habitat use patterns of whales, particularly in remote and inaccessible regions, frequently poses logistical and economic challenges. Here we trial a new approach for measuring whale density in a remote area, using Very-High-Resolution WorldView-3 satellite imagery. This approach has capacity to provide sightings data to complement and assist traditional sightings surveys. We compare at-sea whale density estimates to estimates derived from satellite imagery collected at a similar time, and use suction-cup archival logger data to make an adjustment for surface availability. We demonstrate that satellite imagery can provide useful data on whale occurrence and density. Densities, when unadjusted for surface availability are shown to be considerably lower than those estimated by the ship survey. However, adjusted for surface availability and weather conditions (0.13 whales per km2, CV = 0.38), they fall within an order of magnitude of those derived by traditional line-transect estimates (0.33 whales per km2, CV = 0.09). Satellite surveys represent an exciting development for high-resolution image-based cetacean observation at sea, particularly in inaccessible regions, presenting opportunities for ongoing and future research.more » « less
An official website of the United States government
