Abstract We introduce the National Science Foundation (NSF) AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES). This AI institute was funded in 2020 as part of a new initiative from the NSF to advance foundational AI research across a wide variety of domains. To date AI2ES is the only NSF AI institute focusing on environmental science applications. Our institute focuses on developing trustworthy AI methods for weather, climate, and coastal hazards. The AI methods will revolutionize our understanding and prediction of high-impact atmospheric and ocean science phenomena and will be utilized by diverse, professional user groups to reduce risks to society. In addition, we are creating novel educational paths, including a new degree program at a community college serving underrepresented minorities, to improve workforce diversity for both AI and environmental science.
more »
« less
Institute for Foundations of Machine Learning (IFML): Advancing AI systems that will transform our world
Abstract The Institute for Foundations of Machine Learning (IFML) focuses on core foundational tools to power the next generation of machine learning models. Its research underpins the algorithms and data sets that make generative artificial intelligence (AI) more accurate and reliable. Headquartered at The University of Texas at Austin, IFML researchers collaborate across an ecosystem that spans University of Washington, Stanford, UCLA, Microsoft Research, the Santa Fe Institute, and Wichita State University. Over the past year, we have witnessed incredible breakthroughs in AI on topics that are at the heart of IFML's agenda, such as foundation models, LLMs, fine‐tuning, and diffusion with game‐changing applications influencing almost every area of science and technology. In this article, we seek to highlight seek to highlight the application of foundational machine learning research on key use‐inspired topics:Fairness in Imaging with Deep Learning: designing the correct metrics and algorithms to make deep networks less biased.Deep proteins: using foundational machine learning techniques to advance protein engineering and launch a biomanufacturing revolution.Sounds and Space for Audio‐Visual Learning: building agents capable of audio‐visual navigation in complex 3D environments via new data augmentations.Improving Speed and Robustness of Magnetic Resonance Imaging: using deep learning algorithms to develop fast and robust MRI methods for clinical diagnostic imaging.IFML is also responding to explosive industry demand for an AI‐capable workforce. We have launched an accessible, affordable, and scalable new degree program—the MSAI—that looks to wholly reshape the AI/ML workforce pipeline.
more »
« less
- Award ID(s):
- 2019844
- PAR ID:
- 10503102
- Publisher / Repository:
- AI Magazine
- Date Published:
- Journal Name:
- AI Magazine
- Volume:
- 45
- Issue:
- 1
- ISSN:
- 0738-4602
- Page Range / eLocation ID:
- 35 to 41
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Institute for Student‐AI Teaming (iSAT) addresses the foundational question:how to promote deep conceptual learning via rich socio‐collaborative learning experiences for all students?—a question that is ripe for AI‐based facilitation and has the potential to transform classrooms. We advance research in speech, computer vision, human‐agent teaming, computer‐supported collaborative learning, expansive co‐design, and the science of broadening participation to design and study next generation AI technologies (called AI Partners) embedded in student collaborative learning teams in coordination with teachers. Our institute ascribes to theoretical perspectives that aim to create a normative environment of widespread engagement through responsible design of technology, curriculum, and pedagogy in partnership with K–12 educators, racially diverse students, parents, and other community members.more » « less
-
Abstract To date, many AI initiatives (eg, AI4K12, CS for All) developed standards and frameworks as guidance for educators to create accessible and engaging Artificial Intelligence (AI) learning experiences for K‐12 students. These efforts revealed a significant need to prepare youth to gain a fundamental understanding of how intelligence is created, applied, and its potential to perpetuate bias and unfairness. This study contributes to the growing interest in K‐12 AI education by examining student learning of modelling real‐world text data. Four students from an Advanced Placement computer science classroom at a public high school participated in this study. Our qualitative analysis reveals that the students developed nuanced and in‐depth understandings of how text classification models—a type of AI application—are trained. Specifically, we found that in modelling texts, students: (1) drew on their social experiences and cultural knowledge to create predictive features, (2) engineered predictive features to address model errors, (3) described model learning patterns from training data and (4) reasoned about noisy features when comparing models. This study contributes to an initial understanding of student learning of modelling unstructured data and offers implications for scaffolding in‐depth reasoning about model decision making. Practitioner notesWhat is already known about this topicScholarly attention has turned to examining Artificial Intelligence (AI) literacy in K‐12 to help students understand the working mechanism of AI technologies and critically evaluate automated decisions made by computer models.While efforts have been made to engage students in understanding AI through building machine learning models with data, few of them go in‐depth into teaching and learning of feature engineering, a critical concept in modelling data.There is a need for research to examine students' data modelling processes, particularly in the little‐researched realm of unstructured data.What this paper addsResults show that students developed nuanced understandings of models learning patterns in data for automated decision making.Results demonstrate that students drew on prior experience and knowledge in creating features from unstructured data in the learning task of building text classification models.Students needed support in performing feature engineering practices, reasoning about noisy features and exploring features in rich social contexts that the data set is situated in.Implications for practice and/or policyIt is important for schools to provide hands‐on model building experiences for students to understand and evaluate automated decisions from AI technologies.Students should be empowered to draw on their cultural and social backgrounds as they create models and evaluate data sources.To extend this work, educators should consider opportunities to integrate AI learning in other disciplinary subjects (ie, outside of computer science classes).more » « less
-
Abstract Optimal transport (OT) methods seek a transformation map (or plan) between two probability measures, such that the transformation has the minimum transportation cost. Such a minimum transport cost, with a certain power transform, is called the Wasserstein distance. Recently, OT methods have drawn great attention in statistics, machine learning, and computer science, especially in deep generative neural networks. Despite its broad applications, the estimation of high‐dimensional Wasserstein distances is a well‐known challenging problem owing to the curse‐of‐dimensionality. There are some cutting‐edge projection‐based techniques that tackle high‐dimensional OT problems. Three major approaches of such techniques are introduced, respectively, the slicing approach, the iterative projection approach, and the projection robust OT approach. Open challenges are discussed at the end of the review. This article is categorized under:Statistical and Graphical Methods of Data Analysis > Dimension ReductionStatistical Learning and Exploratory Methods of the Data Sciences > Manifold Learningmore » « less
-
Abstract Essential to life on Earth, assessment of marine photosynthesis is of paramount importance. Photosynthesis occurs in spatially discrete microscopic entities at various levels of biological organization, from subcellular chloroplasts to symbiotic microalgae and macroalgae, and is influenced by the surrounding conditions.As such, in situ photosynthetic efficiency mapping on appropriate scales holds great promise for learning about these processes.To achieve this goal, we designed, fabricated, and tested an underwater microscope that incorporates standard colour, epifluorescence, and variable chlorophyllafluorescence imaging with nearly micron spatial resolution that resolves the structure and photosynthetic efficiency of benthic organisms.Our results highlight coral observations with high‐resolution photosynthetic spatial variability and detailed morphology. Our imaging system therefore enables research never before possible on the health and physiology of benthic aquatic organisms in situ, placing it in the context of their physical and biological environment.more » « less
An official website of the United States government

