Abstract Functional data analysis is an evolving field focused on analyzing data that reveals insights into curves, surfaces, or entities within a continuous domain. This type of data is typically distinguished by the inherent dependence and smoothness observed within each data curve. Traditional functional data analysis approaches have predominantly relied on linear models, which, while foundational, often fall short in capturing the intricate, nonlinear relationships within the data. This paper seeks to bridge this gap by reviewing the integration of deep neural networks into functional data analysis. Deep neural networks present a transformative approach to navigating these complexities, excelling particularly in high‐dimensional spaces and demonstrating unparalleled flexibility in managing diverse data constructs. This review aims to advance functional data regression, classification, and representation by integrating deep neural networks with functional data analysis, fostering a harmonious and synergistic union between these two fields. The remarkable ability of deep neural networks to adeptly navigate the intricate functional data highlights a wealth of opportunities for ongoing exploration and research across various interdisciplinary areas. This article is categorized under:Data: Types and Structure > Time Series, Stochastic Processes, and Functional DataStatistical Learning and Exploratory Methods of the Data Sciences > Deep LearningStatistical Learning and Exploratory Methods of the Data Sciences > Neural Networks
more »
« less
Institute for Foundations of Machine Learning (IFML): Advancing AI systems that will transform our world
Abstract The Institute for Foundations of Machine Learning (IFML) focuses on core foundational tools to power the next generation of machine learning models. Its research underpins the algorithms and data sets that make generative artificial intelligence (AI) more accurate and reliable. Headquartered at The University of Texas at Austin, IFML researchers collaborate across an ecosystem that spans University of Washington, Stanford, UCLA, Microsoft Research, the Santa Fe Institute, and Wichita State University. Over the past year, we have witnessed incredible breakthroughs in AI on topics that are at the heart of IFML's agenda, such as foundation models, LLMs, fine‐tuning, and diffusion with game‐changing applications influencing almost every area of science and technology. In this article, we seek to highlight seek to highlight the application of foundational machine learning research on key use‐inspired topics:Fairness in Imaging with Deep Learning: designing the correct metrics and algorithms to make deep networks less biased.Deep proteins: using foundational machine learning techniques to advance protein engineering and launch a biomanufacturing revolution.Sounds and Space for Audio‐Visual Learning: building agents capable of audio‐visual navigation in complex 3D environments via new data augmentations.Improving Speed and Robustness of Magnetic Resonance Imaging: using deep learning algorithms to develop fast and robust MRI methods for clinical diagnostic imaging.IFML is also responding to explosive industry demand for an AI‐capable workforce. We have launched an accessible, affordable, and scalable new degree program—the MSAI—that looks to wholly reshape the AI/ML workforce pipeline.
more »
« less
- Award ID(s):
- 2019844
- PAR ID:
- 10503102
- Publisher / Repository:
- AI Magazine
- Date Published:
- Journal Name:
- AI Magazine
- Volume:
- 45
- Issue:
- 1
- ISSN:
- 0738-4602
- Page Range / eLocation ID:
- 35 to 41
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Essential to life on Earth, assessment of marine photosynthesis is of paramount importance. Photosynthesis occurs in spatially discrete microscopic entities at various levels of biological organization, from subcellular chloroplasts to symbiotic microalgae and macroalgae, and is influenced by the surrounding conditions.As such, in situ photosynthetic efficiency mapping on appropriate scales holds great promise for learning about these processes.To achieve this goal, we designed, fabricated, and tested an underwater microscope that incorporates standard colour, epifluorescence, and variable chlorophyllafluorescence imaging with nearly micron spatial resolution that resolves the structure and photosynthetic efficiency of benthic organisms.Our results highlight coral observations with high‐resolution photosynthetic spatial variability and detailed morphology. Our imaging system therefore enables research never before possible on the health and physiology of benthic aquatic organisms in situ, placing it in the context of their physical and biological environment.more » « less
-
Abstract The Institute for Student‐AI Teaming (iSAT) addresses the foundational question:how to promote deep conceptual learning via rich socio‐collaborative learning experiences for all students?—a question that is ripe for AI‐based facilitation and has the potential to transform classrooms. We advance research in speech, computer vision, human‐agent teaming, computer‐supported collaborative learning, expansive co‐design, and the science of broadening participation to design and study next generation AI technologies (called AI Partners) embedded in student collaborative learning teams in coordination with teachers. Our institute ascribes to theoretical perspectives that aim to create a normative environment of widespread engagement through responsible design of technology, curriculum, and pedagogy in partnership with K–12 educators, racially diverse students, parents, and other community members.more » « less
-
Abstract We introduce the National Science Foundation (NSF) AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES). This AI institute was funded in 2020 as part of a new initiative from the NSF to advance foundational AI research across a wide variety of domains. To date AI2ES is the only NSF AI institute focusing on environmental science applications. Our institute focuses on developing trustworthy AI methods for weather, climate, and coastal hazards. The AI methods will revolutionize our understanding and prediction of high-impact atmospheric and ocean science phenomena and will be utilized by diverse, professional user groups to reduce risks to society. In addition, we are creating novel educational paths, including a new degree program at a community college serving underrepresented minorities, to improve workforce diversity for both AI and environmental science.more » « less
-
While offering the potential to support learning interactions, emerging AI applications like Large Language Models (LLMs) come with ethical concerns. Grounding technology design in human values can address AI ethics and ensure adoption. To this end, we apply Value‐Sensitive Design—involving empirical, conceptual and technical investigations—to centre human values in the development and evaluation of LLM‐based chatbots within a high school environmental science curriculum. Representing multiple perspectives and expertise, the chatbots help students refine their causal models of climate change's impact on local marine ecosystems, communities and individuals. We first perform an empirical investigation leveraging participatory design to explore the values that motivate students and educators to engage with the chatbots. Then, we conceptualize the values that emerge from the empirical investigation by grounding them in research in ethical AI design, human values, human‐AI interactions and environmental education. Findings illuminate considerations for the chatbots to support students' identity development, well‐being, human–chatbot relationships and environmental sustainability. We further map the values onto design principles and illustrate how these principles can guide the development and evaluation of the chatbots. Our research demonstrates how to conduct contextual, value‐sensitive inquiries of emergent AI technologies in educational settings. Practitioner notesWhat is already known about this topicGenerative artificial intelligence (GenAI) technologies like Large Language Models (LLMs) can not only support learning, but also raise ethical concerns such as transparency, trust and accountability.Value‐sensitive design (VSD) presents a systematic approach to centring human values in technology design.What this paper addsWe apply VSD to design LLM‐based chatbots in environmental education and identify values central to supporting students' learning.We map the values emerging from the VSD investigations to several stages of GenAI technology development: conceptualization, development and evaluation.Implications for practice and/or policyIdentity development, well‐being, human–AI relationships and environmental sustainability are key values for designing LLM‐based chatbots in environmental education.Using educational stakeholders' values to generate design principles and evaluation metrics for learning technologies can promote technology adoption and engagement.more » « less
An official website of the United States government

