This content will become publicly available on April 1, 2025
- PAR ID:
- 10503423
- Publisher / Repository:
- SIAM
- Date Published:
- Journal Name:
- Proceedings of the SIAM International Conference on Data Mining
- ISSN:
- 2167-0102
- ISBN:
- 978-1-61197-803-2
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Training machine learning (ML) models for scientific problems is often challenging due to limited observation data. To overcome this challenge, prior works commonly pre-train ML models using simulated data before having them fine-tuned with small real data. Despite the promise shown in initial research across different domains, these methods cannot ensure improved performance after fine-tuning because (i) they are not designed for extracting generalizable physics-aware features during pre-training, (ii) the features learned from pre-training can be distorted by the fine-tuning process. In this paper, we propose a new learning method for extracting, preserving, and adapting physics-aware features. We build a knowledge-guided neural network (KGNN) model based on known dependencies amongst physical variables, which facilitate extracting physics-aware feature representation from simulated data. Then we fine-tune this model by alternately updating the encoder and decoder of the KGNN model to enhance the prediction while preserving the physics-aware features learned through pre-training. We further propose to adapt the model to new testing scenarios via a teacher-student learning framework based on the model uncertainty. The results demonstrate that the proposed method outperforms many baselines by a good margin, even using sparse training data or under out-of-sample testing scenarios.more » « less
-
A common approach to transfer learning under distribution shift is to fine-tune the last few layers of a pre-trained model, preserving learned features while also adapting to the new task. This paper shows that in such settings, selectively fine-tuning a subset of layers (which we term surgical fine-tuning) matches or outperforms commonly used fine-tuning approaches. Moreover, the type of distribution shift influences which subset is more effective to tune: for example, for image corruptions, fine-tuning only the first few layers works best. We validate our findings systematically across seven real-world data tasks spanning three types of distribution shifts. Theoretically, we prove that for two-layer neural networks in an idealized setting, first-layer tuning can outperform fine-tuning all layers. Intuitively, fine-tuning more parameters on a small target dataset can cause information learned during pre-training to be forgotten, and the relevant information depends on the type of shift.more » « less
-
Recent advances in unsupervised learning have shown that unsupervised pre-training, followed by fine-tuning, can improve model generalization. However, a rigorous understanding of how the representation function learned on an unlabeled dataset affects the generalization of the fine-tuned model is lacking. Existing theoretical research does not adequately account for the heterogeneity of the distribution and tasks in pre-training and fine-tuning stage. To bridge this gap, this paper introduces a novel theoretical framework that illuminates the critical factor influencing the transferability of knowledge acquired during unsupervised pre-training to the subsequent fine-tuning phase, ultimately affecting the generalization capabilities of the fine-tuned model on downstream tasks. We apply our theoretical framework to analyze generalization bound of two distinct scenarios: Context Encoder pre-training with deep neural networks and Masked Autoencoder pre-training with deep transformers, followed by fine-tuning on a binary classification task. Finally, inspired by our findings, we propose a novel regularization method during pre-training to further enhances the generalization of fine-tuned model. Overall, our results contribute to a better understanding of unsupervised pre-training and fine-tuning paradigm, and can shed light on the design of more effective pre-training algorithms.more » « less
-
Abstract Insect pests cause significant damage to food production, so early detection and efficient mitigation strategies are crucial. There is a continual shift toward machine learning (ML)‐based approaches for automating agricultural pest detection. Although supervised learning has achieved remarkable progress in this regard, it is impeded by the need for significant expert involvement in labeling the data used for model training. This makes real‐world applications tedious and oftentimes infeasible. Recently, self‐supervised learning (SSL) approaches have provided a viable alternative to training ML models with minimal annotations. Here, we present an SSL approach to classify 22 insect pests. The framework was assessed on raw and segmented field‐captured images using three different SSL methods, Nearest Neighbor Contrastive Learning of Visual Representations (NNCLR), Bootstrap Your Own Latent, and Barlow Twins. SSL pre‐training was done on ResNet‐18 and ResNet‐50 models using all three SSL methods on the original RGB images and foreground segmented images. The performance of SSL pre‐training methods was evaluated using linear probing of SSL representations and end‐to‐end fine‐tuning approaches. The SSL‐pre‐trained convolutional neural network models were able to perform annotation‐efficient classification. NNCLR was the best performing SSL method for both linear and full model fine‐tuning. With just 5% annotated images, transfer learning with ImageNet initialization obtained 74% accuracy, whereas NNCLR achieved an improved classification accuracy of 79% for end‐to‐end fine‐tuning. Models created using SSL pre‐training consistently performed better, especially under very low annotation, and were robust to object class imbalances. These approaches help overcome annotation bottlenecks and are resource efficient.
-
Transfer learning using ImageNet pre-trained models has been the de facto approach in a wide range of computer vision tasks. However, fine-tuning still requires task-specific training data. In this paper, we propose N3 (Neural Networks from Natural Language) - a new paradigm of synthesizing task-specific neural networks from language descriptions and a generic pre-trained model. N3 leverages language descriptions to generate parameter adaptations as well as a new task-specific classification layer for a pre-trained neural network, effectively “fine-tuning” the network for a new task using only language descriptions as input. To the best of our knowledge, N3 is the first method to synthesize entire neural networks from natural language. Experimental results show that N3 can out-perform previous natural-language based zero-shot learning methods across 4 different zero-shot image classification benchmarks. We also demonstrate a simple method to help identify keywords in language descriptions leveraged by N3 when synthesizing model parameters.more » « less