Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 24, 2025
-
Training machine learning (ML) models for scientific problems is often challenging due to limited observation data. To overcome this challenge, prior works commonly pre-train ML models using simulated data before having them fine-tuned with small real data. Despite the promise shown in initial research across different domains, these methods cannot ensure improved performance after fine-tuning because (i) they are not designed for extracting generalizable physics-aware features during pre-training, (ii) the features learned from pre-training can be distorted by the fine-tuning process. In this paper, we propose a new learning method for extracting, preserving, and adapting physics-aware features. We build a knowledge-guided neural network (KGNN) model based on known dependencies amongst physical variables, which facilitate extracting physics-aware feature representation from simulated data. Then we fine-tune this model by alternately updating the encoder and decoder of the KGNN model to enhance the prediction while preserving the physics-aware features learned through pre-training. We further propose to adapt the model to new testing scenarios via a teacher-student learning framework based on the model uncertainty. The results demonstrate that the proposed method outperforms many baselines by a good margin, even using sparse training data or under out-of-sample testing scenarios.more » « lessFree, publicly-accessible full text available April 1, 2025
-
Accurate prediction of water flow is of utmost importance, particularly for ensuring water supply and informing early actions for floods and droughts. Existing flow prediction methods rely on the input of weather drivers, which hinders their applicability to monitoring small headwater streams due to the limited spatial resolution of existing weather datasets. This paper introduces a new dataset with frequent imagery on streams for water monitoring tasks. Our objective is to automatically predict streamflow for each stream site using frequent images taken at a sub-hourly scale. To overcome the challenge of limited labels for certain stream sites, we employ knowledge transfer from well-observed sites to poorly-observed sites via domain adaptation. As each stream site involves highly variable time series data over long periods, we introduce a novel method STCGAN (Spatial-Temporal Cycle Generative Adversarial Network), which incorporates temporal context by conditioning on the sequence's time and learns overall trends of stream flow variation. It integrates the predictive modeling of streamflow with the cyclic generative process and enhances the prediction with data augmentation using generated synthetic samples. Our experiments demonstrate superior performance of the proposed method using data collected from the West Brook area located in western Massachusetts, US. The proposed method can be further extended to selectively combine information from multiple well-observed stream sites, leading to improved overall performance.more » « less
-
Training machine learning (ML) models for scientific problems is often challenging due to limited observation data. To overcome this challenge, prior works commonly pre-train ML models using simulated data before having them fine-tuned with small real data. Despite the promise shown in initial research across different domains, these methods cannot ensure improved performance after fine-tuning because (i) they are not designed for extracting generalizable physics-aware features during pre-training, (ii) the features learned from pre-training can be distorted by the fine-tuning process. In this paper, we propose a new learning method for extracting, preserving, and adapting physics-aware features. We build a knowledge-guided neural network (KGNN) model based on known dependencies amongst physical variables, which facilitate extracting physics-aware feature representation from simulated data. Then we fine-tune this model by alternately updating the encoder and decoder of the KGNN model to enhance the prediction while preserving the physics-aware features learned through pre-training. We further propose to adapt the model to new testing scenarios via a teacher-student learning framework based on the model uncertainty. The results demonstrate that the proposed method outperforms many baselines by a good margin, even using sparse training data or under out-of-sample testing scenarios.more » « less
-
Accurate prediction of water quality and quantity is crucial for sustainable development and human well-being. However, existing data-driven methods often suffer from spatial biases in model performance due to heterogeneous data, limited observations, and noisy sensor data. To overcome these challenges, we propose Fair-Graph, a novel graph-based recurrent neural network that leverages interrelated knowledge from multiple rivers to predict water flow and temperature within large-scale stream networks. Additionally, we introduce node-specific graph masks for information aggregation and adaptation to enhance prediction over heterogeneous river segments. To reduce performance disparities across river segments, we introduce a centralized coordination strategy that adjusts training priorities for segments. We evaluate the prediction of water temperature within the Delaware River Basin, and the prediction of streamflow using simulated data from U.S. National Water Model in the Houston River network. The results showcase improvements in predictive performance and highlight the proposed model's ability to maintain spatial fairness over different river segments.
Free, publicly-accessible full text available March 25, 2025