Abstract Slurry casting method dominates the electrode manufacture of lithium‐ion batteries. The entire procedure is similar to the newspaper printing that includes premixing of cast materials into solvents homogeneously, and continuously transferring and drying the slurry mixture onto the current collector. As a market approaching US $80 billion by 2024, the optimization of manufacture process is crucial and attractive. However, the organic solvent remains irreplaceable in the wet method for making slurries, even though it is capital‐intensive and toxic. Here, an advanced powder printing technique is demonstrated that is completely solvent‐free and dry. Through removing the solvent and related procedures, this method is anticipated to statistically save 20% of the cost at a remarkably shortened production cycle (from hours to minutes). The dry printed electrodes outperform commercial slurry cast ones in 650 cycles (80% capacity retention in 500 cycles), and thick electrodes are successfully fabricated to increase the energy density. Furthermore, microscopy techniques are utilized to characterize the difference of electrode microstructure between dry and wet methods, and distinguish dry printing's advantages on controlling the microstructure. In summary, this study proves a practical fabrication method for lithium‐ion electrodes with lowered cost and favorable performance, and allows more advanced electrode designs potentially.
more »
« less
Tuning the water interlayer spacer of microwave-synthesized holey graphene films towards high performance supercapacitor application
Abstract Graphene-based electrodes have been extensively investigated for supercapacitor applications. However, their ion diffusion efficiency is often hindered by the graphene restacking phenomenon. Even though holey graphene is fabricated to address this issue by providing ion transport channels, those channels could still be blocked by densely stacked graphene nanosheets. To tackle this challenge, this research aims at improving the ion diffusion efficiency of microwave-synthesized holey graphene films by tuning the water interlayer spacer towards the improved supercapacitor performance. By controlling the vacuum filtration during graphene-based electrode fabrication, we obtain dry films with dense packing and wet films with sparse packing. The SEM images reveal that 20 times larger interlayer distance is constructed in the wet film compared to that in the dry counterpart. The holey graphene wet film delivers a specific capacitance of 239 F/g, ~82% enhancement over the dry film (131 F/g). By an integrated experimental and computational study, we quantitatively show that the interlayer spacing in combination with the nanoholes in the basal plane dominates the ion diffusion rate in holey graphene-based electrodes. Our study concludes that novel hierarchical structures should be further considered even in holey graphene thin films to fully exploit the superior advantages of graphene-based supercapacitors.
more »
« less
- PAR ID:
- 10503473
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- 2D Materials
- ISSN:
- 2053-1583
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Charge collection is critical in any photodetector or photovoltaic device. Novel materials such as quantum dots (QDs) have extraordinary light absorption properties, but their poor mobility and short diffusion length limit efficient charge collection using conventional top/bottom contacts. In this work, a novel architecture based on multiple intercalated chemical vapor deposition graphene monolayers distributed in an orderly manner inside a QD film is studied. The intercalated graphene layers ensure that at any point in the absorbing material, photocarriers will be efficiently collected and transported. The devices with intercalated graphene layers have superior quantum efficiency over single‐bottom graphene/QD devices, overcoming the known restriction that the diffusion length imposes on film thickness. QD film with increased thickness shows efficient charge collection over the entire λ ≈ 500–1000 nm spectrum. This architecture could be applied to boost the performance of other low‐cost materials with poor mobility, allowing efficient collection for films thicker than their diffusion length.more » « less
-
Graphene oxide (GO) films have a great potential for aerospace, electronics, and renewable energy applications due to their low cost and unique properties. For structural applications, they can achieve an exceptional combination of damping and stiffness. This study investigates the effect of packing density, reduction, and water removal on stiffness and damping of graphene oxide films. GO sheets dispersed in water are passed through a filter and deposited on a removable substrate. Through variations of the film fabrication process, films of both GO and reduced GO (rGO) are produced with varying levels of packing. Heat treatment is also used to remove the water in half of the films. The degree of packing is assessed through film density calculations. Microscopy as well as Raman and X-ray spectroscopy are used to measure the degree of packing while Dynamic Mechanical Analysis (DMA) is used to quantity mechanical damping and storage modulus of specimens in tension. Correlating mechanical properties to structure of films revealed new understanding of damping and stress transfer mechanisms in these materials. Optimal structures resulted in superior combinations of stiffness (18 GPa) and damping (0.14), potentially paving the way for using GO based films in advanced structural applications.more » « less
-
Abstract Electrocatalytically active titanium oxynitride (TiNO) thin films were fabricated on commercially available titanium metal plates using a pulsed laser deposition method for energy storage applications. The elemental composition and nature of bonding were analyzed using X-ray photoelectron spectroscopy (XPS) to reveal the reacting species and active sites responsible for the enhanced electrochemical performance of the TiNO electrodes. Symmetric supercapacitor devices were fabricated using two TiNO working electrodes separated by an ion-transporting layer to analyze their real-time performance. The galvanostatic charge–discharge studies on the symmetric cell have indicated that TiNO films deposited on the polycrystalline titanium plates at lower temperatures are superior to TiNO films deposited at higher temperatures in terms of storage characteristics. For example, TiNO films deposited at 300 °C exhibited the highest specific capacity of 69 mF/cm2 at 0.125 mA/cm2 with an energy density of 7.5 Wh/cm2. The performance of this supercapacitor (300 °C TiNO) device is also found to be ∼22% better compared to that of a 500 °C TiNO supercapacitor with a capacitance retention ability of 90% after 1000 cycles. The difference in the electrochemical storage and capacitance properties is attributed to the reduced leaching away of oxygen from the TiNO films by the Ti plate at lower deposition temperatures, leading to higher oxygen content in the TiNO films and, consequently, a high redox activity at the electrode/electrolyte interface.more » « less
-
This study evaluates the critical roles of the dispersion medium and temperature during the solvothermal synthesis of nitrogen-doped reduced graphene oxide (NG) for enhancing its performance as an active material in supercapacitor electrodes. Using a fixed volume of a solvent (THF, ethanol, acetonitrile, water, N,N-Dimethylformamide, ethylene glycol, or N-Methyl-2-pyrrolidone) as the dispersive medium, a series of samples at different temperatures (60, 75, 95, 120, 150, 180, and 195 °C) are synthesized and investigated. A proper removal of the oxygen moieties from their surface and an optimum number of N-based defects are essential for a better reduction of graphene oxide and better stacking of the NG sheets. The origin of the supercapacitance of NG sheets can be correlated to the inherent properties such as the boiling point, viscosity, dipole moment, and dielectric constant of all the studied solvents, along with the synthesis temperature. Due to the achievement of a suitable synthesis environment, NG synthesized using N,N-Dimethylformamide at 150 °C displays an excellent supercapacitance value of 514 F/g at 0.5 A/g, which is the highest among all our samples and also competitive among several state-of-the-art lightweight carbon materials. Our work not only helps in understanding the origin of the supercapacitance exhibited by graphene-based materials but also tuning them through a suitable choice of synthesis conditions.more » « less
An official website of the United States government

