This content will become publicly available on November 1, 2024
- Award ID(s):
- 1953009
- NSF-PAR ID:
- 10503484
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Solar Energy
- Volume:
- 264
- Issue:
- C
- ISSN:
- 0038-092X
- Page Range / eLocation ID:
- 112047
- Subject(s) / Keyword(s):
- Transparent PV, Multiple solar panels, Cadmium Telluride, Photon conversion efficiency, Output power.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Photovoltaic solar cells have been extensively used for various applications and are considered one of the most efficient green energy sources. However, their 2D surface area solar harvesting has limitations, and there is an increasing need to explore the possibility of multiple layer solar harvest for enhanced energy density. To address this, we have developed spectral-selective transparent thin films based on porphyrin and iron oxide compounds that allow solar light to penetrate multiple layers, significantly increasing solar harvesting surface area and energy density. These thin films are designed as photovoltaic (PV) and photothermal (PT) panels that can convert photons into either electricity or thermal energy for various green energy applications, such as smart building skins and solar desalination. The advantages of this 3D solar harvesting system include enlarged solar light collecting surface area and increased energy density. The multilayer system transforms the current 2D to 3D solar harvesting, enabling efficient energy generation. This review discusses recent developments in the synthesis and characterization of PV and PT transparent thin films for solar harvesting and energy generation using multilayers. Major applications of the 3D solar harvesting system are reviewed, including thermal energy generation, multilayered DSSC PV system, and solar desalination. Some preliminary data on transparent multilayer DSSC PVs are presented.more » « less
-
Abstract A fundamental challenge in energy sustainability is efficient utilization of solar energy towards energy‐neutral systems. The current solar cell technologies have been most widely employed to achieve this goal, but are limited to a single‐layer 2D surface. To harvest solar light more efficiently, a multilayer system capable of harvesting solar light in a cuboid through transparent photothermal thin films of iron oxide and a porphyrin compound is developed. Analogous to a multilayer capacitor, an array of transparent, spectral selective, photothermal thin films allows white light to penetrate them, not only collecting photon energy in a 3D space, but generating sufficient heat on each layer with significantly increased total surface area. In this fashion, thermal energy is generated via a multilayer photothermal system that functions as an efficient solar collector, energy converter and generator with high energy density. A solar‐activated thermal energy generator that can produce heat without any power supply and reach a maximum temperature of 76.1 °C is constructed. With a constant incoming white light (0.4 W cm−2), the thermal energy generated can be amplified 12‐fold via multilayers. The multilayer system extends another dimension in solar harvesting and paves a new path to energy generation for the energy‐neutral system.
-
Concerns over the land use changes impacts of solar photovoltaic (PV) development are increasing as PV energy development expands. Co-locating utility-scale solar energy with vegetation may maintain or rehabilitate the land's ability to provide ecosystem services. Previous studies have shown that vegetation under and around the panels may improve the performance of the co-located PV and that PV may create a favorable environment for the growth of vegetation. While there have been some pilot-scale experiments, the existence and magnitude of these benefits of vegetation has not been confirmed in a utility-scale PV facility over multiple years. In this study we use power output data coupled with microclimatic measurements in temperate climates to assess these potential benefits. This study combines multi-year microclimatic measurements to analyze the physical interactions between PV arrays and the underlying soil-vegetation system in three utility-scale PV facilities in Minnesota, USA. No significant cooling of PV panels or increased power production was observed in PV arrays with underlying vegetation. Fine soil particle fraction was the highest in soils within PV arrays with the vegetation which was attributable to the lowest wind speeds from the compounding suppression of wind by vegetation and PV arrays. Soil moisture and soil nutrient response to re-vegetation varied between PV facilities, which could be attributed to differing soil texture. No statistically significant vegetation-driven panel cooling was observed in this climate. This finding prompts a need for site-specific studies to identify contributing factors for environmental co-benefits in co-located systems.more » « less
-
Integrating PV panels as a source of clean energy has been a widely established method to achieve net-zero energy (NZE) buildings. The exterior envelope of the high-rise buildings can serve as the best place to integrate PV panels for utilizing solar energy. The taller the building, the higher the potential to utilize solar energy by PV panels. However, shadows casting on the BIPV façade systems are unavoidable as they are often subject to partial shades from panels self-shading as well as building walls. Partial shading or ununiform solar radiation on the PV surface causes a dramatic decrease in the current output of the circuit. For that reason, in BIPV facades the default circuit connection of manufactured PV panels does not output maximum power under partial shading conditions. This paper investigates the different circuit connections in BIPV façade system to achieve higher energy yields while addressing design requirements. To this end, PV power production in different circuit connection reconfiguration scenarios was explored in two levels of BIPV components: 1) PV cells, and 2) strings of PV cells. Experimental tests conducted to validate the simulation results. The results of this study indicated that the maximum power generation occurred when the circuit connection between cells within a string is series, and the circuit connection between the strings within a PV panel is parallel. Results of the experimental tests shown that the series-parallel circuit connection increases the energy yields of the BIPV facades 71 times in real-world applications. The comparison analysis of the Ladybug energy simulations and the proposed analysis Grasshopper analysis recipe power output showed that the developed Grasshopper script will increase the BIPVs energy yields by 90% in simulations.more » « less
-
A Photothermal Solar Tunnel Radiator (PSTR) is designed and developed by employing multiple transparent photothermal glass panels (TPGP). The primary objective is to pioneer a transformative approach to achieve energy-neutral building heating utilities, exemplified by a lab-scale "Photothermal Solar Box" (PSB) exclusively heated with TPGP under natural sunlight. The PSTR presents a novel paradigm for sustainable energy, enabling direct solar energy capture through transparent glass substrates with photothermal coatings. The high transparency of Fe3O4@Cu2-xS coated glass substrates enhance efficient solar harvesting and photothermal energy generation within the Photothermal Solar Box. The system demonstrates an impressive thermal energy output, reaching up to 9.1x105 joules with 8 photothermal panels in parallel. Even under colder conditions (ambient temperature: -10 °C), with accelerated heat loss, the interior temperatures of the PSB with partial thermal insulation achieve a commendable 35 °C, showcasing effective photothermal heating in cold weather. These findings indicate the system's resilience and efficiency in harnessing solar energy under diverse conditions, including partial cloudy weather. The initiative contributes to broader sustainability goals by providing a scalable and practical alternative to traditional solar heating methods, aligning with the global mission for a cleaner, greener future.more » « less