Seismic imaging and monitoring of the near-surface structure are crucial for the sustainable development of urban areas. However, standard seismic surveys based on cabled or autonomous geophone arrays are expensive and hard to adapt to noisy metropolitan environments. Distributed acoustic sensing (DAS) with pre-existing telecom fiber optic cables, together with seismic ambient noise interferometry, have the potential to fulfill this gap. However, a detailed noise wavefield characterization is needed before retrievingcoherent waves from chaotic noise sources. We analyze local seismic ambient noise by tracking five-month changes in signal-to-noise ratio (SNR) of Rayleigh surface wave estimated from traffic noise recorded by DAS along the straight university campus busy road. We apply the seismic interferometry method to the 800 m long part of the Penn State Fiber-Optic For Environment Sensing (FORESEE) array. We evaluate the 160 virtual shot gathers (VSGs) by determining the SNR using the slant-stack technique. We observe strong SNR variations in time and space. We notice higher SNR for virtual source points close to road obstacles. The spatial noise distribution confirms that noise energy focuses mainly on bumps and utility holes. We also see the destructive impact of precipitation, pedestrian traffic, and traffic along main intersections on VSGs. A similar processing workflow can be applied to various straight roadside fiber optic arrays in metropolitan areas.
more »
« less
Photonic Signal Transport on Aerospace Platforms: is Analog Signaling Ever Useful?
For photonic signal transport in multiple-GHz, waveform-sensitive RF transport applications, it will be shown that digital-over-fiber enables superior SNR performance versus analog-over-fiber. However, for SWaP-constrained systems, the latter can provide a viable solution with minimal SNR penalty
more »
« less
- Award ID(s):
- 2052808
- PAR ID:
- 10503622
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 978-1-6654-2352-6
- Page Range / eLocation ID:
- 1 to 2
- Subject(s) / Keyword(s):
- photonics, digital-over-fiber, analog-over-fiber, radio-over-fiber, optics, aerospace, defense
- Format(s):
- Medium: X
- Location:
- Miramar Beach, FL, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract: Orthogonal chirp division multiplexing (OCDM) is a fairly new multi-carrier modulation scheme that has been proposed for optical fiber communications. It spreads data over an entire band using a set of linear chirps that are mutually orthogonal thus achieving the maximum spectral efficiency. This paper analyzes the performance of OCDM in wireless multi-path channels with narrow band interference (NBI) and in doing so shows that linear minimum mean squared error (MMSE) equalization exhibits an interesting signal-to-noise ratio (SNR) dependent degradation in error performance caused by interference amplification at high SNR. Furthermore, it employs a variant of the MMSE equalizer when the interference energy is known to prevent interference amplification and improve the error performance.more » « less
-
Abstract Objective. To understand neural circuit dynamics, it is critical to manipulate and record many individual neurons. Traditional recording methods, such as glass microelectrodes, can only control a small number of neurons. More recently, devices with high electrode density have been developed, but few of them can be used for intracellular recording or stimulation in intact nervous systems. Carbon fiber electrodes (CFEs) are 8 µ m-diameter electrodes that can be assembled into dense arrays (pitches ⩾ 80 µ m). They have good signal-to-noise ratios (SNRs) and provide stable extracellular recordings both acutely and chronically in neural tissue in vivo (e.g. rat motor cortex). The small fiber size suggests that arrays could be used for intracellular stimulation. Approach. We tested CFEs for intracellular stimulation using the large identified and electrically compact neurons of the marine mollusk Aplysia californica . Neuron cell bodies in Aplysia range from 30 µ m to over 250 µ m. We compared the efficacy of CFEs to glass microelectrodes by impaling the same neuron’s cell body with both electrodes and connecting them to a DC coupled amplifier. Main results. We observed that intracellular waveforms were essentially identical, but the amplitude and SNR in the CFE were lower than in the glass microelectrode. CFE arrays could record from 3 to 8 neurons simultaneously for many hours, and many of these recordings were intracellular, as shown by simultaneous glass microelectrode recordings. CFEs coated with platinum-iridium could stimulate and had stable impedances over many hours. CFEs not within neurons could record local extracellular activity. Despite the lower SNR, the CFEs could record synaptic potentials. CFEs were less sensitive to mechanical perturbations than glass microelectrodes. Significance. The ability to do stable multi-channel recording while stimulating and recording intracellularly make CFEs a powerful new technology for studying neural circuit dynamics.more » « less
-
null (Ed.)The Advanced L band Phased Array Camera for Arecibo (ALPACA) will rely on RF-over-fiber signal transport and hybrid FPGA/GPU signal processing hardware for calibration, beamforming, and imaging. We report on signal transport system development, phase and gain stability requirements, and array signal processing algorithm development.more » « less
-
Abstract—Simulating nonlinear systems featuring a dynamic DSP module is cumbersome, e.g., fiber transport with digital coherent receivers. Machine Learning is used to quickly and accurately estimate waveforms transported through multi-span fiber links over multiple launch powers and OSNRs. Replacing simulation techniques with ML is considered.more » « less
An official website of the United States government

