Regulatory networks depict promoting or inhibiting interactions between molecules in a biochemical system. We introduce a category-theoretic formalism for regulatory networks, using signed graphs to model the networks and signed functors to describe occurrences of one network in another, especially occurrences of network motifs. With this foundation, we establish functorial mappings between regulatory networks and other mathematical models in biochemistry. We construct a functor from reaction networks, modeled as Petri nets with signed links, to regulatory networks, enabling us to precisely define when a reaction network could be a physical mechanism underlying a regulatory network. Turning to quantitative models, we associate a regulatory network with a Lotka-Volterra system of differential equations, defining a functor from the category of signed graphs to a category of parameterized dynamical systems. We extend this result from closed to open systems, demonstrating that Lotka-Volterra dynamics respects not only inclusions and collapsings of regulatory networks, but also the process of building up complex regulatory networks by gluing together simpler pieces. Formally, we use the theory of structured cospans to produce a lax double functor from the double category of open signed graphs to that of open parameterized dynamical systems. Throughout the paper, we ground the categorical formalism in examples inspired by systems biology. 
                        more » 
                        « less   
                    
                            
                            Theoretical and computational tools to model multistable gene regulatory networks
                        
                    
    
            Abstract The last decade has witnessed a surge of theoretical and computational models to describe the dynamics of complex gene regulatory networks, and how these interactions can give rise to multistable and heterogeneous cell populations. As the use of theoretical modeling to describe genetic and biochemical circuits becomes more widespread, theoreticians with mathematical and physical backgrounds routinely apply concepts from statistical physics, non-linear dynamics, and network theory to biological systems. This review aims at providing a clear overview of the most important methodologies applied in the field while highlighting current and future challenges. It also includes hands-on tutorials to solve and simulate some of the archetypical biological system models used in the field. Furthermore, we provide concrete examples from the existing literature for theoreticians that wish to explore this fast-developing field. Whenever possible, we highlight the similarities and differences between biochemical and regulatory networks and ‘classical’ systems typically studied in non-equilibrium statistical and quantum mechanics. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10503791
- Publisher / Repository:
- Reports on Progress in Physics
- Date Published:
- Journal Name:
- Reports on progress in physics
- Volume:
- 86
- Issue:
- 10
- ISSN:
- 1361-6633
- Page Range / eLocation ID:
- 106601
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The inference of gene regulatory networks (GRNs) from high-throughput data constitutes a fundamental and challenging task in systems biology. Boolean networks are a popular modeling framework to understand the dynamic nature of GRNs. In the absence of reliable methods to infer the regulatory logic of Boolean GRN models, researchers frequently assume threshold logic as a default. Using the largest repository of published expert-curated Boolean GRN models as best proxy of reality, we systematically compare the ability of two popular threshold formalisms, the Ising and the 01 formalism, to truthfully recover biological functions and biological system dynamics. While Ising rules match fewer biological functions exactly than 01 rules, they yield a better average agreement. In general, more complex regulatory logic proves harder to be represented by either threshold formalism. Informed by these results and a meta-analysis of regulatory logic, we propose modified versions for both formalisms, which provide a better function-level and dynamic agreement with biological GRN models than the usual threshold formalisms. For small biological GRN models with low connectivity, corresponding threshold networks exhibit similar dynamics. However, they generally fail to recover the dynamics of large networks or highly connected networks. In conclusion, this study provides new insights into an important question in computational systems biology: how truthfully do Boolean threshold networks capture the dynamics of GRNs?more » « less
- 
            Perfect adaptation, the ability to regulate and maintain gene expression to its desired value despite disturbances, is important in the development of organisms. Building biological controllers to endow engineered biological systems with such perfect adaptation capability is a key goal in synthetic biology. Model-guided exploration of such synthetic circuits has been effective in designing such systems. However, theoretical analysis to guarantee controller properties with nonlinear models, such as Hill functions, remains challenging, while use of linear models fails to capture the inherent nonlinear dynamics of gene expression systems. Here, we propose a reverse engineering approach to infer the kinetic parameters for nonlinear Hill function-type models from analysis of linear models and apply our method to design controllers, which achieve perfect adaptation. Focusing on three biological network motif-based controllers, we demonstrate via simulation the efficacy of the proposed approach in combining linear system theories with nonlinear modelling, to design multiple gene circuits that could deliver perfect adaptation. Given the ubiquitous use of Hill functions in describing the dynamics of biological regulatory networks, we anticipate the proposed reverse engineering approach to benefit a wide range of systems and synthetic biology applications.more » « less
- 
            null (Ed.)Synopsis Many biological systems across scales of size and complexity exhibit a time-varying complex network structure that emerges and self-organizes as a result of interactions with the environment. Network interactions optimize some intrinsic cost functions that are unknown and involve for example energy efficiency, robustness, resilience, and frailty. A wide range of networks exist in biology, from gene regulatory networks important for organismal development, protein interaction networks that govern physiology and metabolism, and neural networks that store and convey information to networks of microbes that form microbiomes within hosts, animal contact networks that underlie social systems, and networks of populations on the landscape connected by migration. Increasing availability of extensive (big) data is amplifying our ability to quantify biological networks. Similarly, theoretical methods that describe network structure and dynamics are being developed. Beyond static networks representing snapshots of biological systems, collections of longitudinal data series can help either at defining and characterizing network dynamics over time or analyzing the dynamics constrained to networked architectures. Moreover, due to interactions with the environment and other biological systems, a biological network may not be fully observable. Also, subnetworks may emerge and disappear as a result of the need for the biological system to cope with for example invaders or new information flows. The confluence of these developments renders tractable the question of how the structure of biological networks predicts and controls network dynamics. In particular, there may be structural features that result in homeostatic networks with specific higher-order statistics (e.g., multifractal spectrum), which maintain stability over time through robustness and/or resilience to perturbation. Alternative, plastic networks may respond to perturbation by (adaptive to catastrophic) shifts in structure. Here, we explore the opportunity for discovering universal laws connecting the structure of biological networks with their function, positioning them on the spectrum of time-evolving network structure, i.e. dynamics of networks, from highly stable to exquisitely sensitive to perturbation. If such general laws exist, they could transform our ability to predict the response of biological systems to perturbations—an increasingly urgent priority in the face of anthropogenic changes to the environment that affect life across the gamut of organizational scales.more » « less
- 
            Many biological systems across scales of size and complexity exhibit a time-varying complex network structure that emerges and self-organizes as a result of interactions with the environment. Network interactions optimize some intrinsic cost functions that are unknown and involve for example energy efficiency, robustness, resilience, and frailty. A wide range of networks exist in biology, from gene regulatory networks important for organismal development, protein interaction networks that govern physiology and metabolism, and neural networks that store and convey information to networks of microbes that form microbiomes within hosts, animal contact networks that underlie social systems, and networks of populations on the landscape connected by migration. Increasing availability of extensive (big) data is amplifying our ability to quantify biological networks. Similarly, theoretical methods that describe network structure and dynamics are being developed. Beyond static networks representing snapshots of biological systems, collections of longitudinal data series can help either at defining and characterizing network dynamics over time or analyzing the dynamics constrained to networked architectures. Moreover, due to interactions with the environment and other biological systems, a biological network may not be fully observable. Also, subnetworks may emerge and disappear as a result of the need for the biological system to cope with for example invaders or new information flows. The confluence of these developments renders tractable the question of how the structure of biological networks predicts and controls network dynamics. In particular, there may be structural features that result in homeostatic networks with specific higher-order statistics (e.g., multifractal spectrum), which maintain stability over time through robustness and/or resilience to perturbation. Alternative, plastic networks may respond to perturbation by (adaptive to catastrophic) shifts in structure. Here, we explore the opportunity for discovering universal laws connecting the structure of biological networks with their function, positioning them on the spectrum of time-evolving network structure, that is, dynamics of networks, from highly stable to exquisitely sensitive to perturbation. If such general laws exist, they could transform our ability to predict the response of biological systems to perturbations—an increasingly urgent priority in the face of anthropogenic changes to the environment that affect life across the gamut of organizational scales.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    