skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Model Organisms To Study Methanogenesis, a Uniquely Archaeal Metabolism
Methanogenic archaea are the only organisms that produce CH4as part of their energy-generating metabolism. They are ubiquitous in oxidant-depleted, anoxic environments such as aquatic sediments, anaerobic digesters, inundated agricultural fields, the rumen of cattle, and the hindgut of termites, where they catalyze the terminal reactions in the degradation of organic matter.  more » « less
Award ID(s):
2148165
PAR ID:
10504142
Author(s) / Creator(s):
;
Editor(s):
Maupin-Furlow, Julie A.
Publisher / Repository:
Journal of Bacteriology
Date Published:
Journal Name:
Journal of Bacteriology
Volume:
205
Issue:
8
ISSN:
0021-9193
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Stars can either be formed in or captured by the accretion disks in active galactic nuclei (AGNs). These AGN stars are irradiated and subject to extreme levels of accretion, which can turn even low-mass stars into very massive ones (M> 100M) whose evolution may result in the formation of massive compact objects (M> 10M). Here we explore the spins of these AGN stars and the remnants they leave behind. We find that AGN stars rapidly spin up via accretion, eventually reaching near-critical rotation rates. They further maintain near-critical rotation even as they shed their envelopes, become compact, and undergo late stages of burning. This makes them good candidates to produce high-spin massive black holes, such as the ones seen by LIGO-Virgo in GW 190521g, as well as long gamma-ray bursts and the associated chemical pollution of the AGN disk. 
    more » « less
  2. Abstract Thin films based on PbZr1−xTixO3and K1−xNaxNbO3are increasingly being commercialized in piezoelectric MEMS due to the comparatively low drive voltages required relative to bulk actuators, as well as the facile approach to making sensor or actuator arrays. As these materials are incorporated into devices, it is critically important that they operate reliably over the lifetime of the system. This paper discusses some of the factors controlling the electrical and electromechanical reliability of lead zirconate titanate (PZT)-based piezoMEMS films. In particular, it will be shown the gradients in the Zr/Ti ratio through the depth of the films are useful in increasing the lifetime of the films under DC electrical stresses. 
    more » « less
  3. Abstract A simple experimental procedure for scaling carbene Brønsted basicity is described. The results highlight the strong basicity of pyrazol‐4‐ylidenes, a type of mesoionic carbene, also named cyclic‐bentallenes (CBA). They are more basic (pKaH>42.7 in acetonitrile) than the popular proazaphosphatrane Verkade bases, and even the Schwesinger phosphazene superbase P4(tBu). The basicity of these compounds can readily be tuned, and they are accessible in multigram quantities. These results open new avenues for carbon centered superbases. 
    more » « less
  4. Abstract Several mechanisms have been proposed to explain why the isotope ratios of precipitation vary in space and time and why they correlate with other climate variables like temperature and precipitation. Here, we argue that this behavior is best understood through the lens of radiative transfer, which treats the depletion of atmospheric vapor transport by precipitation as analogous to the attenuation of light by absorption or scattering. Building on earlier work by Siler et al., we introduce a simple model that uses the equations of radiative transfer to approximate the two-dimensional pattern of the oxygen isotope composition of precipitation (δp) from monthly mean hydrologic variables. The model accurately simulates the spatial and seasonal variability inδpwithin a state-of-the-art climate model and permits a simple decomposition ofδpvariability into contributions from gradients in evaporation and the length scale of vapor transport. Outside the tropics,δpis mostly controlled by gradients in evaporation, whose dependence on temperature explains the positive correlation betweenδpand temperature (i.e., the temperature effect). At low latitudes,δpis mostly controlled by gradients in the transport length scale, whose inverse relationship with precipitation explains the negative correlation betweenδpand precipitation (i.e., the amount effect). This suggests that the temperature and amount effects are both mostly explained by the variability in upstream rainout, but they reflect distinct mechanisms governing rainout at different latitudes. Significance StatementThe isotopic composition of precipitation has long been used to make inferences about past climates based on its observed relationship with precipitation in the tropics and with temperature at higher latitudes. These relationships—known as the “amount effect” and “temperature effect,” respectively—have been attributed to many different mechanisms, most of which are thought to operate at either high or low latitudes but not both. Here, we present a unified framework for interpreting the isotope variability that can explain the latitude dependence of the temperature and amount effects despite making no distinction between high and low latitudes. Although our results are generally consistent with certain interpretations of the amount effect, they suggest that the temperature effect is widely misunderstood. 
    more » « less
  5. Abstract Many barred galaxies exhibit upturns (shoulders) in their bar-major-axis density profile. Simulation studies have suggested that shoulders are supported by loopedx1orbits, occur in growing bars, and can appear after bar buckling. We investigate the orbital support and evolution of shoulders via frequency analyses of orbits in simulations. We confirm that looped orbits are shoulder-supporting, and can remain so, to a lesser extent, after being vertically thickened. We show that looped orbits appear at the resonance ( Ωφ− ΩP)/ΩR= 1/2 (analogous to the classical inner Lindblad resonance, and here called ILR) with vertical-to-radial frequency ratios 1 ≲ ΩzR≲ 3/2 (verticallywarmorbits).Coolorbits at the ILR (those with ΩzR> 3/2) are vertically thin and have no loops, contributing negligibly to shoulders. As bars slow and thicken, either secularly or by buckling, they populate warm orbits at the ILR. Further thickening carries these orbits toward crossing the vertical ILR [vILR, ( Ωφ− ΩP)/Ωz= 1/2], where they convert in-plane motion to vertical motion, become chaotic, kinematically hotter, and less shoulder-supporting. Hence, persistent shoulders require bars to trap new stars, consistent with the need for a growing bar. Since buckling speeds up trapping on warm orbits at the ILR, it can be followed by shoulder formation, as seen in simulations. This sequence supports the recent observational finding that shoulders likely precede the emergence of BP-bulges. The python module for the frequency analysis,naif, is made available. 
    more » « less