skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on October 10, 2024

Title: Educational series: turning monomers into crosslinked polymer networks

Multifunctional monomers enable the synthesis of polymer networks by adapting the polymerization methods used for conventional linear polymer synthesis.

 
more » « less
Award ID(s):
2203727 1749730
NSF-PAR ID:
10504566
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Polymer Chemistry
Volume:
14
Issue:
39
ISSN:
1759-9954
Page Range / eLocation ID:
4503 to 4514
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Lignin is an aromatic‐rich biomass polymer that is cheap, abundant, and sustainable. However, its application in the solid electrolyte field is rare due to challenges in well‐defined polymer synthesis. Herein, the synthesis of lignin‐graft‐poly(ethylene glycol) (PEG) and its conductivity test for a solid electrolyte application are demonstrated. The main steps of synthesis include functionalization of natural lignin's hydroxyl to alkene, followed by graft‐copolymerization of PEG thiol to the lignin via photoredox thiol‐ene reaction. Two lignin‐graft‐PEGs are prepared having 22 wt% lignin (lignin‐graft‐PEG 550) and 34 wt% lignin (lignin‐graft‐PEG 2000). Then, new polymer electrolytes for conductivity tests are prepared via addition of lithium bis‐trifluoromethanesulfonimide. The polymer graft electrolytes exhibit ionic conductivity up to 1.4 × 10−4 S cm−1 at 35 °C. The presence of lignin moderately impacts conductivity at elevated temperature compared to homopolymer PEG. Furthermore, the ionic conductivity of lignin‐graft‐PEG at ambient temperature is significantly higher than homopolymer PEG precedents.

     
    more » « less
  2. ynthesis-property relation is fundamental to materials science, but many aspects of the relation are not well understood for many materials. Impetus for this paper comes from our recent appreciation for the distinct roles of entanglements and crosslinks in a polymer network. Here we study the synthesis-property relation of polyacrylamide hydrogels prepared by free radical polymerization. Some of the as-prepared hydrogels are further submerged in water to swell either to equilibrium or to a certain polymer content. The synthesis parameters include the composition of a precursor, as well as the polymer content of a hydrogel. Series of hydrogels are prepared along several paths in the space of synthesis parameters. For each hydrogel, the stress-stretch curve is measured, giving four properties: modulus, strength, stretchability, and work of fracture. We interpret the experimentally measured synthesis-property relation in terms of entropic polymer networks of covalent bonds. When the precursor has a low crosslinker-to-monomer molar ratio, the resulting polymer network has on average long polymer segments. When the precursor has a low water-to-monomer molar ratio, the resulting polymer network has on average many entanglements per polymer segment. We show that crosslinks lower strength, but entanglements do not. By contrast, both crosslinks and entanglements increase modulus. A network of highly entangled long polymer segments exhibits high swell resistance, modulus, and strength. 
    more » « less
  3. Abstract

    We report the synthesis of a Y‐shaped inimer that contains two orthogonal initiators for ATRP and NMP. The inimer is synthesized through a one‐pot multi‐component reaction that vastly simplifies the typically cumbersome synthesis of similar compounds. The Y‐inimer has the versatility to be homopolymerized into a backbone for A/B Janus bottlebrush synthesis or copolymerized with glycidyl methacrylate (GMA) and cross‐linked into an ultra‐thin coating for mixed A/B brush growth from planar surfaces. Importantly, the Y‐shaped nature of the inimer ensures growth of A and B brushes are consistently in a 1:1 ratio. We demonstrate the application of the Y‐inimer in the synthesis of a PMMA/PS Janus bottlebrush as well as two different mixed A/B polymer brushes, one with the ability to microphase separate, and a second mixed polyelectrolyte brush with opposite charges. The inimer is compatible with various A/B monomer systems and offers a universal approach to the “grafting‐from” polymerization of dual vinyl polymer side chains. This study provides a unique way of utilizing multi‐component reactions in polymer chemistry to access complex functional architectures.

     
    more » « less
  4. Oxygen tolerant polymerizations including Photoinduced Electron/Energy Transfer-Reversible Addition–Fragmentation Chain-Transfer (PET-RAFT) polymerization allow for high-throughput synthesis of diverse polymer architectures on the benchtop in parallel. Recent developments have further increased throughput using liquid handling robotics to automate reagent handling and dispensing into well plates thus enabling the combinatorial synthesis of large polymer libraries. Although liquid handling robotics can enable automated polymer reagent dispensing in well plates, photoinitiation and reaction monitoring require automation to provide a platform that enables the reliable and robust synthesis of various polymer compositions in high-throughput where polymers with desired molecular weights and low dispersity are obtained. Here, we describe the development of a robotic platform to fully automate PET-RAFT polymerizations and provide individual control of reactions performed in well plates. On our platform, reagents are automatically dispensed in well plates, photoinitiated in individual wells with a custom-designed lightbox until the polymerizations are complete, and monitored online in real-time by tracking fluorescence intensities on a fluorescence plate reader, with well plate transfers between instruments occurring via a robotic arm. We found that this platform enabled robust parallel polymer synthesis of both acrylate and acrylamide homopolymers and copolymers, with high monomer conversions and low dispersity. The successful polymerizations obtained on this platform make it an efficient tool for combinatorial polymer chemistry. In addition, with the inclusion of machine learning protocols to help navigate the polymer space towards specific properties of interest, this robotic platform can ultimately become a self-driving lab that can dispense, synthesize, and monitor large polymer libraries. 
    more » « less
  5. Abstract

    Dithiophosphoric acids (DTPAs) are an intriguing class of compounds that are sourced from elemental sulfur and white phosphorus and are prepared from the reaction of phosphorus pentasulfide with alcohols. The electrophilic addition of DTPAs to alkenes and unsaturated olefinic substrates is a known reaction, but has not been applied to polymer synthesis and polymer functionalization. We report on the synthesis and application of DTPAs for the functionalization of challenging poly‐enes, namely polyisoprene (PI) and polynorbornene (pNB) prepared by ring‐opening metathesis polymerization (ROMP). The high heteroatom content within DTPA moieties impart intriguing bulk properties to poly‐ene materials after direct electrophilic addition reactions to the polymer backbone introducing DTPAs as side chain groups. The resulting materials possess both enhanced optical and flame retardant properties vs the poly‐ene starting materials. Finally, we demonstrate the ability to prepare crosslinked polydiene films with di‐functional DTPAs, where the crosslinking density and thermomechanical properties can be directly tuned by DTPA feed ratios.

     
    more » « less