skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Warm Pressing of Organosilicon Polymer Toward Monolithic Ceramics
Warm pressing of organosilicon polymers is often challenging due to the formation of cracks due to release of volatile compounds during the warm pressing process. The focus of the present study is to warm press crosslinked SMP‐10 powders into crack‐free compacts and to pyrolyze them to get bulk SiC monoliths. Crack formation during warm pressing is addressed by optimizing the crosslinking temperature, and the loss of formability of the powders crosslinked at higher temperatures is overcome with the use of uncured polymer as a binder. The crosslinking temperature of the preceramic polymer plays a crucial role in developing crack‐free green bodies. The amount of binder used is varied to study its effect on the bulk density of the pyrolyzed product. The warm pressed green bodies pyrolyzed at 1400 °C result in the formation of bulk silicon carbide ceramics and are characterized using X‐ray diffractometer and FTIR spectroscopy. Warm pressing is performed at a lower temperature than reported in the literature, and this limits the incorporation of oxygen during the warm pressing.  more » « less
Award ID(s):
2119833 2119832
PAR ID:
10504679
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Engineering Materials
Volume:
26
Issue:
18
ISSN:
1438-1656
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A liquid‐phase polymer‐to‐ceramic approach is reported for the synthesis of hafnium carbide (HfC)/hafnium oxide (HfO2) composite particles from a commercial precursor. Typically, HfC ceramics have been obtained by sintering of fine powders, which usually results in large particle size and high porosity during densification. In this study a single‐source liquid precursor was first cured at low temperature and then pyrolyzed at varying conditions to achieve HfC ceramics. The chemical structure of the liquid and cured precursors, and the resulting HfC ceramics was studied using various analytical techniques. The nuclear magnetic resonance and Fourier transform infrared spectroscopy indicated the presence of partially hydrated hafnium oxychloride (Hf–O–Cl·nH2O) in the precursor. Scanning electron microscopy of the resulting HfC crystals showed a size distribution in the range of approx. 600–700 nm. The X‐ray diffraction of the pyrolyzed samples confirmed the formation of crystalline HfC along with monoclinic‐HfO2and free carbon phase. The formation of HfO2in the ceramics was significantly reduced by controlling the low‐temperature curing temperature. Pyrolysis at various temperatures showed that HfC formation occurred even at 1000°C. These results show that the reported precursor could be promising for the direct synthesis of ultrahigh temperature HfC ceramics and for precursor infiltration pyrolysis of reinforced ceramic matrix composites. 
    more » « less
  2. null (Ed.)
    Electrospinning is an emerging technique for synthesizing micron to submicron-sized polymer fibre supports for applications in energy storage, catalysis, filtration, drug delivery and so on. However, fabrication of electrospun ceramic fibre mats for use as a reinforcement phase in ceramic matrix composites or CMCs for aerospace applications remains largely unexplored. This is mainly due to stringent operating requirements that require a combination of properties such as low mass density, high strength, and ultrahigh temperature resistance. Herein we report fabrication of molecular precursor-derived silicon oxycarbide or SiOC fibre mats via electrospinning and pyrolysis of cyclic polysiloxanes-based precursors at significantly lower weight loadings of organic co-spin agent. Ceramic fibre mats, which were free of wrapping, were prepared by a one-step spinning (in air) and post heat-treatment for crosslinking and pyrolysis (in argon at 800 °C). The pyrolyzed fibre mats were revealed to be amorphous and a few microns in diameter. Four siloxane-based pre-ceramic polymers were used to study the influence of precursor molecular structure on the compositional and morphological differences of cross-linked and pyrolyzed products. Further thermal characterization suggested the potential of electrospun ceramic mats in high temperature applications. 
    more » « less
  3. CO2-induced dynamic covalent polymer networks (DCPNs) have received significant attention due to their capability of sequestering CO2 to remodel material properties. Despite the promising success of carbon sequestration in the polymer, the mechanistic understanding of the CO2-induced polymer network is still at the very beginning. A theoretical framework to understand the CO2-induced formation of bulk networks and healing of interfacial cracks of DCPNs has not been established. Here, we build up a polymer-network-based theoretical model system that can mechanistically explain the constitutive behavior and crack healing of CO2-induced DCPNs. We assume that the DCPN consists of interpenetrating networks crosslinked by CO2-induced dynamic bonds which follow a force-dependent chemical kinetics. During the healing process, we consider the CO2 molecules diffuse from the surface to the crack interface to reform the polymer network for interfacial repair. Our theoretical framework can calculate the stress-strain behaviors of both original and healed DCPNs. We demonstrate that the theoretically calculated stress-strain responses of the original DCPNs across various CO2 concentrations, as well as those of healed DCPNs under different CO2 concentrations, consistently match the documented experimental results. We expect our model to become an invaluable tool for innovating, designing, understanding, and optimizing CO2-induced DCPNs. 
    more » « less
  4. The objective of this study is to compare three different feedstock powders for the binder jetting process by characterizing their flowability and sinterability. Binder jetting additive manufacturing is a promising technology for fabricating ceramic parts with complex or customized geometries. Granulation is a promising material preparation method due to the potential high sinterability and flowability of the produced powder. However, no study has been made to systematically compare raw and granulated powders in terms of their flowing and sintering behaviors. This paper aims at filling this knowledge gap. Two raw powders (i.e., fine raw powder of 300 nm and coarse raw powder of 70 μm) and one granulated powder from spray freeze drying were compared. Different flowability metrics, including volumetric flow rate, mass flow rate, Hausner ratio, Carr index, and repose angle were measured. Different sinterability metrics, including sintered bulk density, volume shrinkage, and densification ratio were compared for all three powders. Results show that granulated powder achieved comparably high flowability to that of the coarse raw powder and also comparably high sinterability to that of the fine raw powder. Moreover, suitable metrics for the characterization of the sinterability and flowability for these three powders are recommended. This study suggests spray freeze drying produces high-quality feedstock powder for binder jetting process. 
    more » « less
  5. Abstract In this study, we demonstrate a novel environmental barrier coating processed from polymer‐derived ceramics (PDCs) with homogeneously distributed sub‐micrometer Y2O3as the filler. Under suitable conditions, dense and crack‐free coatings can be achieved for all the designed compositions with the volumetric content of Y2O3varied from 45 to 93 vol%. To process the PDC SiC–Y2O3composite coatings, Y2O3particles and SiC liquid precursor were uniformly dispersed in hexane and then dip‐coated on SiC substrates. After cross‐linking at 250°C and heat‐treated at 900°C in argon, dense and crack‐free PDC SiC–Y2O3composite coatings were formed. The effect of coating thickness and heat‐treatment temperature on the formation of cracks due to constrained pyrolysis was studied. The critical thickness for realizing crack‐free coatings of three compositions (i.e., 93, 77, and 45 vol% Y2O3) was studied for heat treatment from 1000 to 1300°C using atomic force microscope and scanning electron microscopy. As heat‐treatment temperature increases, the critical coating thickness decreases for the same coating compositions due to enhanced shrinkage at higher temperature. With higher Y2O3content, the critical thickness of the coating increased. The inert Y2O3particles reduce the amount of polymer leading to reduction in the overall constrained shrinkage of the coating during heat treatment. 
    more » « less