Dilute magnetic semiconductors (DMS), achieved through substitutional doping of spin‐polarized transition metals into semiconducting systems, enable experimental modulation of spin dynamics in ways that hold great promise for novel magneto–electric or magneto–optical devices, especially for two‐dimensional (2D) systems such as transition metal dichalcogenides that accentuate interactions and activate valley degrees of freedom. Practical applications of 2D magnetism will likely require room‐temperature operation, air stability, and (for magnetic semiconductors) the ability to achieve optimal doping levels without dopant aggregation. Here, room‐temperature ferromagnetic order obtained in semiconducting vanadium‐doped tungsten disulfide monolayers produced by a reliable single‐step film sulfidation method across an exceptionally wide range of vanadium concentrations, up to 12 at% with minimal dopant aggregation, is described. These monolayers develop p‐type transport as a function of vanadium incorporation and rapidly reach ambipolarity. Ferromagnetism peaks at an intermediate vanadium concentration of ~2 at% and decreases for higher concentrations, which is consistent with quenching due to orbital hybridization at closer vanadium–vanadium spacings, as supported by transmission electron microscopy, magnetometry, and first‐principles calculations. Room‐temperature 2D‐DMS provide a new component to expand the functional scope of van der Waals heterostructures and bring semiconducting magnetic 2D heterostructures into the realm of practical application.
This content will become publicly available on May 3, 2025
2D dilute magnetic semiconductors have been recently reported in transition metal dichalcogenides doped with spin‐polarized transition metal atoms, for example vanadium‐doped WS2monolayers, which exhibit room‐temperature ferromagnetic ordering. However, a broadband characterization of the electronic band structure of these doped WS2monolayers and its dependence on vanadium concentration is still lacking. Therefore, power‐dependent photoluminescence, resonant four‐wave mixing, and differential reflectance spectroscopies are performed here to study optical transitions close to the A exciton energy of vanadium‐doped WS2monolayers at three different doping levels. Instead of a single A exciton peak, vanadium‐doped samples exhibit two photoluminescence peaks associated with transitions from a donor‐like level and the conduction band minima. Moreover, resonant Raman and second‐harmonic generation experiments reveal a blueshift in the B exciton energy but no energy change in the C exciton after vanadium doping. Density functional theory calculations show that the band structure is sensitive to the Hubbard
- PAR ID:
- 10504707
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Optical Materials
- ISSN:
- 2195-1071
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The ability to control the density and spatial distribution of substitutional dopants in semiconductors is crucial for achieving desired physicochemical properties. Substitutional doping with adjustable doping levels has been previously demonstrated in 2D transition metal dichalcogenides (TMDs); however, the spatial control of dopant distribution remains an open field. In this work, edge termination is demonstrated as an important characteristic of 2D TMD monocrystals that affects the distribution of substitutional dopants. Particularly, in chemical vapor deposition (CVD)‐grown monolayer WS2, it is found that a higher density of transition metal dopants is always incorporated in sulfur‐terminated domains when compared to tungsten‐terminated domains. Two representative examples demonstrate this spatial distribution control, including hexagonal iron‐ and vanadium‐doped WS2monolayers. Density functional theory (DFT) calculations are further performed, indicating that the edge‐dependent dopant distribution is due to a strong binding of tungsten atoms at tungsten‐zigzag edges, resulting in the formation of open sites at sulfur‐zigzag edges that enable preferential dopant incorporation. Based on these results, it is envisioned that edge termination in crystalline TMD monolayers can be utilized as a novel and effective knob for engineering the spatial distribution of substitutional dopants, leading to in‐plane hetero‐/multi‐junctions that display fascinating electronic, optoelectronic, and magnetic properties.
-
Abstract The capacity to manipulate magnetization in 2D dilute magnetic semiconductors (2D‐DMSs) using light, specifically in magnetically doped transition metal dichalcogenide (TMD) monolayers (
M ‐dopedTX 2, whereM = V, Fe, and Cr;T = W, Mo;X = S, Se, and Te), may lead to innovative applications in spintronics, spin‐caloritronics, valleytronics, and quantum computation. This Perspective paper explores the mediation of magnetization by light under ambient conditions in 2D‐TMD DMSs and heterostructures. By combining magneto‐LC resonance (MLCR) experiments with density functional theory (DFT) calculations, we show that the magnetization can be enhanced using light in V‐doped TMD monolayers (e.g., V‐WS2, V‐WSe2). This phenomenon is attributed to excess holes in the conduction and valence bands, and carriers trapped in magnetic doping states, mediating the magnetization of the semiconducting layer. In 2D‐TMD heterostructures (VSe2/WS2, VSe2/MoS2), the significance of proximity, charge‐transfer, and confinement effects in amplifying light‐mediated magnetism is demonstrated. We attributed this to photon absorption at the TMD layer that generates electron–hole pairs mediating the magnetization of the heterostructure. These findings will encourage further research in the field of 2D magnetism and establish a novel design of 2D‐TMDs and heterostructures with optically tunable magnetic functionalities, paving the way for next‐generation magneto‐optic nanodevices. -
Abstract Room temperature stable excitons in layered two‐dimensional (2D) transition metal dichalcogenides (TMDs) offer a unique route for engineering light and matter interactions. Due to the strong optical dispersion near the excitonic transitions, a high refractive index arises in these ultrathin semiconductors.[1,2]Utilizing this behavior, strongly confined Fano type optical resonances in an ultrathin (i.e., ≈12 nm) tungsten disulfide (WS2) photonic crystal (PhC) directly fabricated on a TMD‐on‐glass platform are reported. In this approach, Fano‐type WS2photonic resonances strongly couple to the WS2excitonic dispersion engender self‐resonant exciton‐polaritons with an out‐of‐plane optical confinement exceeding that provided by surface plasmon polaritons in the visible. The large spatial light‐matter overlap endowed by this unique monolithic self‐coupling scheme is utilized for steering of enhanced 2D WSe2excitonic photoluminescence in a truly TMD integrated system. It is envisioned that the strong light matter interaction on the TMD‐on‐glass platform will unfold the prospects of ultrathin exciton‐polaritonic resonators.
-
Abstract The field of photovoltaics is revolutionized in recent years by the development of two–dimensional (2D) type‐II heterostructures. These heterostructures are made up of two different materials with different electronic properties, which allows for the capture of a broader spectrum of solar energy than traditional photovoltaic devices. In this study, the potential of vanadium (V)‐doped WS2is investigated, hereafter labeled V‐WS2, in combination with air‐stable Bi2O2Se for use in high‐performance photovoltaic devices. Various techniques are used to confirm the charge transfer of these heterostructures, including photoluminescence (PL) and Raman spectroscopy, along with Kelvin probe force microscopy (KPFM). The results show that the PL is quenched by 40%, 95%, and 97% for WS2/Bi2O2Se, 0.4 at.% V‐WS2/Bi2O2Se, and 2 at.% V‐WS2/Bi2O2Se, respectively, indicating a superior charge transfer in V‐WS2/Bi2O2Se compared to pristine WS2/Bi2O2Se. The exciton binding energies for WS2/Bi2O2Se, 0.4 at.% V‐WS2/Bi2O2Se and 2 at.% V‐WS2/Bi2O2Se heterostructures are estimated to be ≈130, 100, and 80 meV, respectively, which is much lower than that for monolayer WS2. These findings confirm that by incorporating V‐doped WS2, charge transfer in WS2/Bi2O2Se heterostructures can be tuned, providing a novel light‐harvesting technique for the development of the next generation of photovoltaic devices based on V‐doped transition metal dichalcogenides (TMDCs)/Bi2O2Se.