A<sc>bstract</sc> Jet grooming is an important strategy for analyzing relativistic particle collisions in the presence of contaminating radiation. Most jet grooming techniques introduce hard cutoffs to remove soft radiation, leading to discontinuous behavior and associated experimental and theoretical challenges. In this paper, we introduce Pileup and Infrared Radiation Annihilation (Piranha), a paradigm for continuous jet grooming that overcomes the discontinuity and infrared sensitivity of hard-cutoff grooming procedures. We motivate Piranhafrom the perspective of optimal transport and the Energy Mover’s Distance and review Apollonius Subtraction and Iterated Voronoi Subtraction as examples of Piranha-style grooming. We then introduce a new tree-based implementation of Piranha, Recursive Subtraction, with reduced computational costs. Finally, we demonstrate the performance of Recursive Subtraction in mitigating sensitivity to soft distortions from hadronization and detector effects, and additive contamination from pileup and the underlying event.
more »
« less
Local infrared safety in time-ordered perturbation theory
A<sc>bstract</sc> We develop a general expression for weighted cross sections in leptonic annihilation to hadrons based on time-ordered perturbation theory (TOPT). The analytic behavior of the resulting integrals over spatial momenta can be analyzed in the language of Landau equations and infrared (IR) power counting. For any infrared-safe weight, the cancellation of infrared divergences is implemented locally at the integrand level, and in principle can be evaluated numerically in four dimensions. We go on to show that it is possible to eliminate unphysical singularities that appear in time-ordered perturbation theory for arbitrary amplitudes. This is done by reorganizing TOPT into an equivalent form that combines classes of time orderings into a “partially time-ordered perturbation theory”. Applying the formalism to leptonic annihilation, we show how to derive diagrammatic expressions with only physical unitarity cuts.
more »
« less
- Award ID(s):
- 2210533
- PAR ID:
- 10504765
- Publisher / Repository:
- JHEP
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2024
- Issue:
- 2
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> We study black hole linear perturbation theory in a four-dimensional Schwarzschild (anti) de Sitter background. When dealing with apositivecosmological constant, the corresponding spectral problem is solved systematically via the Nekrasov-Shatashvili functions or, equivalently, classical Virasoro conformal blocks. However, this approach can be more complicated to implement for certain perturbations if the cosmological constant isnegative. For these cases, we propose an alternative method to set up perturbation theory for both small and large black holes in an analytical manner. Our analysis reveals a new underlying recursive structure that involves multiple polylogarithms. We focus on gravitational, electromagnetic, and conformally coupled scalar perturbations subject to Dirichlet and Robin boundary conditions. The low-lying modes of the scalar sector of gravitational perturbations and its hydrodynamic limit are studied in detail.more » « less
-
Abstract We present the radio properties of 66 spectroscopically confirmed normal star-forming galaxies (SFGs) at 4.4 <z< 5.9 in the COSMOS field that were [Cii]-detected in the Atacama Large Millimeter/submillimeter Array Large Program to INvestigate [Cii] at Early times (ALPINE). We separate these galaxies (“Cii-detected-all”) into lower-redshift (“Cii-detected-lz”; 〈z〉 = 4.5) and higher-redshift (“Cii-detected-hz”; 〈z〉 = 5.6) subsamples, and stack multiwavelength imaging for each subsample from X-ray to radio bands. A radio signal is detected in the stacked 3 GHz images of the Cii-detected-all and lz samples at ≳3σ. We find that the infrared–radio correlation of our sample, quantified byqTIR, is lower than the local relation for normal SFGs at a ∼3σsignificance level, and is instead broadly consistent with that of bright submillimeter galaxies at 2 <z< 5. Neither of these samples show evidence of dominant active galactic nucleus activity in their stacked spectral energy distributions (SEDs), UV spectra, or stacked X-ray images. Although we cannot rule out the possible effects of the assumed spectral index and applied infrared SED templates in causing these differences, at least partially, the lower obscured fraction of star formation than at lower redshift can alleviate the tension between our stackedqTIRs and those of local normal SFGs. It is possible that the dust buildup, which primarily governs the infrared emission, in addition to older stellar populations, has not had enough time to occur fully in these galaxies, whereas the radio emission can respond on a more rapid timescale. Therefore, we might expect a lowerqTIRto be a general property of high-redshift SFGs.more » « less
-
A<sc>bstract</sc> We extend the Effective Field Theory of Heavy Dark Matter to arbitrary odd representations of SU(2) and incorporate the effects of bound states. This formalism is then deployed to compute the gamma-ray spectrum for a5of SU(2): quintuplet dark matter. Except at isolated values of the quintuplet mass, the bound state contribution to hard photons with energy near the dark-matter mass is at the level of a few percent compared to that from direct annihilation. Further, compared to smaller representations, such as the triplet wino, the quintuplet can exhibit a strong variation in the shape of the spectrum as a function of mass. Using our results, we forecast the fate of the thermal quintuplet, which has a mass of ~13.6 TeV. We find that existing H.E.S.S. data should be able to significantly test the scenario, however, the final word on this canonical model of minimal dark matter will likely be left to the Cherenkov Telescope Array (CTA).more » « less
-
We introduce an individually fitted screened-exchange interaction for the time-dependent Hartree–Fock (TDHF) method and show that it resolves the missing binding energies in polymethine organic dye molecules compared to time-dependent density functional theory (TDDFT). The interaction kernel, which can be thought of as a dielectric function, is generated by stochastic fitting to the screened-Coulomb interaction of many-body perturbation theory (MBPT), specific to each system. We test our method on the flavylium and indocyanine green dye families with a modifiable length of the polymethine bridge, leading to excitations ranging from visible to short-wave infrared. Our approach validates earlier observations on the importance of inclusion of medium range exchange for the exciton binding energy. Our resulting method, TDHF@vW, also achieves a mean absolute error on a par with MBPT at a computational cost on a par with local-functional TDDFT.more » « less
An official website of the United States government

