skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on January 28, 2025

Title: Liouvillian exceptional points of an open driven two-level system

We study the applicability of the Liouvillian exceptional points (LEPs) approach to nanoscale open quantum systems. A generic model of the driven two-level system in a thermal environment is analyzed within the nonequilibrium Green’s function (NEGF) and Bloch quantum master equation formulations. We derive the latter starting from the exact NEGF Dyson equations and highlight the qualitative limitations of the LEP treatment by examining the approximations employed in its derivation. We find that the non-Markov character of evolution in open quantum systems does not allow for the introduction of the concept of exceptional points for a description of their dynamics. Theoretical analysis is illustrated with numerical simulations.

 
more » « less
Award ID(s):
2154323
NSF-PAR ID:
10504850
Author(s) / Creator(s):
; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
160
Issue:
4
ISSN:
0021-9606
Page Range / eLocation ID:
044116
Subject(s) / Keyword(s):
Liouville space exceptional points non equilibrium Green's functions Bloch quantum master equation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The infrared response of a system of two vibrational modes in a cavity is calculated by an effective non-Hermitian Hamiltonian derived by employing the nonequilibrium Green's function (NEGF) formalism. Degeneracies of the Hamiltonian (exceptional points, EPs) widely employed in theoretical analysis of optical cavity spectroscopies are used in an approximate treatment and compared with the full NEGF. Qualitative limitations of the EP treatment are explained by examining the approximations employed in the calculation. 
    more » « less
  2. Recently, exceptional points, a degeneracy of open wave systems, have been observed in photonics, acoustics, and electronics. They have mainly been realized as a degeneracy of resonances; however, a degeneracy associated with the absorption of waves can exhibit distinct and interesting physical features. Here, we demonstrate such an absorbing exceptional point by engineering degeneracies in the absorption spectrum of dissipative optical microcavities. We experimentally distinguished the conditions to realize an absorbing exceptional point versus a resonant exceptional point. Furthermore, when the optical loss was tuned to achieve perfect absorption at an absorbing exceptional point, we observed its signature, an anomalously broadened line shape in the absorption spectrum. The distinct scattering properties of the absorbing exceptional point create opportunities for both fundamental study and applications of non-Hermitian degeneracies. 
    more » « less
  3. Non-Hermitian exceptional points (EPs) represent a special type of degeneracy where not only the eigenvalues coalesce, but also the eigenstates tend to collapse on each other. Recent studies have shown that in the presence of an EP, light-matter interactions are profoundly modified, leading to a host of novel optical phenomena ranging from enhanced sensitivity to chiral light transport. As of now, however, in order to stabilize a system at the vicinity of an exceptional point, its related parameters must be carefully tuned and/or continuously controlled. To overcome this limitation, here we introduce a new family of broadband exceptional points based on unidirectional coupling, implemented by incorporating an Sshaped waveguide in a microring cavity. In active settings, the resulting unidirectionality exhibits unprecedented resilience to perturbations, thus providing a robust and tunable approach for directly generating beams with distinct orbital angular momentum (OAM). This work could open up new possibilities for manipulating OAM degrees of freedom in applications pertaining to telecommunications and quantum computing, while at the same time may expand the notions of non-Hermiticity in the orbital angular momentum space. 
    more » « less
  4. Non-Hermitian Hamiltonians provide an alternative perspective on the dynamics of quantum and classical systems coupled non-conservatively to an environment. Once primarily an interest of mathematical physicists, the theory of non-Hermitian Hamiltonians has solidified and expanded to describe various physically observable phenomena in optical, photonic, and condensed matter systems. Self-consistent descriptions of quantum mechanics based on non-Hermitian Hamiltonians have been developed and continue to be refined. In particular, non-Hermitian frameworks to describe magnonic and hybrid magnonic systems have gained popularity and utility in recent years with new insights into the magnon topology, transport properties, and phase transitions coming into view. Magnonic systems are in many ways a natural platform in which to realize non-Hermitian physics because they are always coupled to a surrounding environment and exhibit lossy dynamics. In this Perspective, we review recent progress in non-Hermitian frameworks to describe magnonic and hybrid magnonic systems, such as cavity magnonic systems and magnon–qubit coupling schemes. We discuss progress in understanding the dynamics of inherently lossy magnetic systems as well as systems with gain induced by externally applied spin currents. We enumerate phenomena observed in both purely magnonic and hybrid magnonic systems which can be understood through the lens of non-Hermitian physics, such as PT and anti-PT-symmetry breaking, dynamical magnetic phase transitions, non-Hermitian skin effect, and the realization of exceptional points and surfaces. Finally, we comment on some open problems in the field and discuss areas for further exploration.

     
    more » « less
  5. Non-Hermitian optics is a burgeoning field at the intersection of quantum physics, electrodynamics, and nanophotonics. It provides a new perspective of the role of gain and loss in optical systems. Leveraging the advanced designs inspired by non-Hermitian physics, classical optical platforms have been widely investigated to unveil novel physical concepts, such as parity-time symmetry and exceptional points, which have no counterparts in the conventional Hermitian settings. These investigations have yielded a plethora of new phenomena in optical wave scattering, optical sensing, and nonlinear optical processes. Non-Hermitian effects also have a profound impact on the lasing behaviors in the semiclassical framework of lasers, allowing for novel ways to engineer single-mode lasers, chiral laser emission, laser noise, linewidth, etc. Furthermore, over recent years, there has been increasing interest in the explorations of non-Hermitian physics in quantum optics, which addresses photon statistics, entanglement, decoherence, and quantum sensing in non-Hermitian systems. In this review, we review the most recent theoretical and experimental advances in non-Hermitian optics and photonics, covering the significant progress in both classical and quantum optics regimes.

     
    more » « less