skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tantalum
This review on coordination chemistry of tantalum covers the literature between 2003 and 2018. Tantalum complexes with ligands based on groups 15 (nitrogen, phosphorus, arsenic), 16 (oxygen, sulfur, selenium, tellurium), and 17 (fluorine, chlorine, bromine) as well as with mixed-donor ligands are the focus. Coverage of organometallic complexes is selective to give readers a more comprehensive understanding of the coordination chemistry of tantalum. Complexes with hydride and boron- and carbon-based ligands, including alkylidene, η2-allyl, allene, vinyl, alkene, alkylidyne, η3-allyl, alkyne, N-heterocyclic carbene (NHC), and CCC pincer ligands, are discussed. Complexes with alkyl, cyclopentadienyl, acyl, iminoacyl, and related ligands are generally not discussed. Tantalum is among the largest early transition elements and can easily form complexes with high coordination numbers, although six is the most common. In addition, the larger radii of tantalum ions lead to less tight coordination sphere and frequently observed stereodynamic properties of the complexes. Tantalum complexes have been used as precursors to make electronic materials through processes such as chemical vapor deposition or atomic layer deposition.  more » « less
Award ID(s):
2055499
PAR ID:
10504988
Author(s) / Creator(s):
Editor(s):
Edwin C. Constable Gerard Parkin Lawrence Que Jr
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Comprehensive Coordination Chemistry III
Edition / Version:
3
ISSN:
9780081026885
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    As part of our continuing interest in the chemistry of cationic antimony Lewis acids as ligands for late transition metals, we have now investigated the synthesis of platinum complexes featuring a triarylstibine ligand substituted by an o-[(dimethylamino)methyl]phenyl group referred to as ArN. More specifically, we describe the synthesis of the amino stibine ligand Ph2SbArN (L) and its platinum dichloride complex [LPtCl]Cl which exists as a chloride salt and which shows weak coordination of the amino group to the antimony center. We also report the conversion of [LPtCl]Cl into a tricationic complex [LHPt(SMe2)]3+ which has been isolated as a tris-triflate salt after reaction of [LPtCl]Cl with SMe2, HOTf and AgOTf. Finally, we show that [LHPt(SMe2)][OTf]3 acts as a catalyst for the cyclization of 2-allyl-2-(2-propynyl)malonate. 
    more » « less
  2. Abstract Milling two equivalents of K[1,3‐(SiMe3)2C3H3] (=K[A′]) with MgX2(X=Cl, Br) produces the allyl complex [K2MgA′4] (1). Crystals grown from toluene are of the solvated species [((η6‐tol)K)2MgA′4] ([1⋅2(tol)]), a trimetallic monomer with both bridging and terminal (η1) allyl ligands. When recrystallized from hexanes, the unsolvated1forms a 2D coordination polymer, in which the Mg is surrounded by three allyl ligands. The C−C bond lengths differ by only 0.028 Å, indicating virtually complete electron delocalization. This is an unprecedented coordination mode for an allyl ligand bound to Mg. DFT calculations indicate that in isolation, an η3‐allyl configuration on Mg is energetically preferred over the η1‐ (σ‐bonded) arrangement, but the Mg must be in a low coordination environment for it to be experimentally realized. Methyl methacrylate is effectively polymerized by1, with activities that are comparable to K[A′] and greater than the homometallic magnesium complex [{MgA′2}2]. 
    more » « less
  3. Abstract Nature uses control of the secondary coordination sphere to facilitate an astounding variety of transformations. Similarly, synthetic chemists have found metal‐ligand cooperativity to be a powerful strategy for designing complexes that can mediate challenging reactivity. In particular, this strategy has been used to facilitate two electron reactions with first row transition metals that more typically engage in one electron redox processes. While NNN pincer ligands feature prominently in this area, examples which can potentially engage in both proton and electron transfer are less common. Dihydrazonopyrrole (DHP) ligands have been isolated in a variety of redox and protonation states when complexed to Ni. However, the redox‐state of this ligand scaffold is less obvious when complexed to metal centers with more accessible redox couples. Here, we synthesize a new series of Fe‐DHP complexes in two distinct oxidation states. Detailed characterization supports that the redox‐chemistry in this set is still primarily ligand based. Finally, these complexes exist as 5‐coordinate species with an open coordination site offering the possibility of enhanced reactivity. 
    more » « less
  4. Abstract Anionic ancillary ligands play a critical role in the construction of rare earth (RE) metal complexes due to the large influence on the stability of the molecule and engendering emergent electronic properties that are of interest in a plethora of applications. Supporting ligands comprising oxygen donor atoms are highly pursued in RE chemistry owing to the high oxophilicity innate to these ions. The scarcely employed bis(acyl)phosphide (BAP) ligands feature oxygen coordination sites and contain a phosphide backbone rendering it attractive for RE‐coordination chemistry. Here, we integrate bis(mesitoyl)phosphide (mesBAP) as an ancillary ligand into REIIIchemistry to generate the first dinuclear trivalent RE complexes containing BAP ligands; [{mesBAP}2RE(THF)(μ‐Cl)]2(RE=Y, (1), Gd (2), and Dy (3); THF=tetrahydrofuran). Each RE center is ligated to two monoanionicmesBAP ligands, one THF molecule and one chloride ion. All three molecules were characterized through single‐crystal X‐ray diffraction,31P NMR, IR and UV‐Vis spectroscopy.31P,1H and13C NMR on the diamagnetic yttrium congener1confirm asymmetric ligand coordination. DFT calculations conducted on2provided insight into the electronic structure. The magnetic properties of2and3were investigated via SQUID magnetometry. The GdIIIions exhibit weak antiferromagnetic coupling, corroborated by DFT results. 
    more » « less
  5. Pellegrini, M; Saccani, C; Guzzini, A (Ed.)
    Twenty novel Mn, Fe, and Cu complexes of ethylene cross-bridged tetraazamacrocycles with potentially copolymerizable allyl and benzyl pendant arms were synthesized and characterized. Multiple X-ray crystal structures demonstrate the cis-folded pseudo-octahedral geometry forced by the rigidifying ethylene cross-bridge and show that two cis coordination cites are available for interaction with substrate and oxidant. The Cu complexes were used to determine kinetic stability under harsh acidic and high-temperature conditions, which revealed that the cyclam-based ligands provide superior stabilization with half-lives of many minutes or even hours in 5 M HCl at 50–90 °C. Cyclic voltammetry studies of the Fe and Mn complexes reveal reversible redox processes indicating stabilization of Fe2+/Fe3+ and Mn2+/Mn3+/Mn4+ oxidation states, indicating the likelihood of catalytic oxidation for these complexes. Finally, dye-bleaching experiments with methylene blue, methyl orange, and rhodamine B demonstrate efficient catalytic decolorization and allow selection of the most successful monomeric catalysts for copolymerization to produce future heterogeneous water purification materials. 
    more » « less