We present results for B(s)- and D(s)-meson semileptonic decays from ongoing calculations by the Fermilab Lattice and MILC Collaborations. Our calculation employs the highly improved stag- gered quark (HISQ) action for both sea and valence quarks and includes several ensembles with physical-mass up, down, strange, and charm quarks and lattice spacings ranging from a ≈ 0.15 fm down to 0.06 fm. At most lattice spacings, an ensemble with physical-mass light quarks is included. The use of the highly improved action, combined with the MILC Collaboration’s gauge ensembles with lattice spacings down to a ≈ 0.042 fm, allows heavy valence quarks to be treated with the same discretization as the light and strange quarks. This unified treatment of the valence quarks allows (in some cases) for absolutely normalized currents, bypassing the need for perturbative matching, which has been a leading source of uncertainty in previous calculations of B-meson decay form factors by our collaboration. All preliminary form-factor results are blinded.
more »
« less
D meson -- pion scattering on CLS 2+1 flavor ensembles
We report progress on finite-volume determinations of heavy light-meson – Goldstone boson scattering phase shifts using the Luescher method on CLS 2+1 flavor gauge field ensembles. In a first iteration we will focus on D-meson – pion scattering in the elastic scattering region at various pion masses using ensembles with three lattice spacings. We employ ensembles on the CLS quark-mass trajectory with a fixed trace of the quark-mass matrix as well as ensembles with a strange-quark mass fixed close to its physical value, which will allow us to study both the light and the strange quark-mass dependence of positive parity heavy-light hadrons close to threshold.
more »
« less
- Award ID(s):
- 2209167
- PAR ID:
- 10505231
- Publisher / Repository:
- Sissa Medialab
- Date Published:
- Journal Name:
- Proceedings of Science
- Page Range / eLocation ID:
- 068
- Subject(s) / Keyword(s):
- Lattice QCD
- Format(s):
- Medium: X Size: 8 pages Other: pdf
- Size(s):
- 8 pages
- Location:
- Bonn, Germany
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We describe a recent lattice-QCD calculation of the leptonic decay con- stants of heavy-light pseudoscalar mesons containing charm and bottom quarks and of the masses of the up, down, strange, charm, and bottom quarks. Results for these quantities are of the highest precision to date. Calculations use 24 isospin-symmetric ensembles of gauge-field configura- tions with six different lattice spacings as small as approximately 0.03 fm and several values of the light quark masses down to physical values of the average up- and down-sea-quark masses. We use the highly-improved staggered quark (HISQ) formulation for valence and sea quarks, includ- ing the bottom quark. The analysis employs heavy-quark effective theory (HQET). A novel HQET method is used in the determination of the quark masses.more » « less
-
A bstract Searches for new low-mass matter and mediator particles have actively been pursued at fixed target experiments and at e + e − colliders. It is challenging at the CERN LHC, but they have been searched for in Higgs boson decays and in B meson decays by the ATLAS and CMS Collaborations, as well as in a low transverse momentum phenomena from forward scattering processes (e.g., FASER). We propose a search for a new scalar particle in association with a heavy vector-like quark. We consider the scenario in which the top quark ( t ) couples to a light scalar ϕ′ and a heavy vector-like top quark T . We examine single and pair production of T in pp collisions, resulting in a final state with a top quark that decays purely hadronically, a T which decays semileptonically ( T → W + b → ℓ ν b ), and a ϕ′ that is very boosted and decays to a pair of collimated photons which can be identified as a merged photon system. The proposed search is expected to achieve a discovery reach with signal significance greater than 5 σ (3 σ ) for m ( T ) as large as 1.8 (2) TeV and m ( ϕ′ ) as small as 1 MeV, assuming an integrated luminosity of 3000 fb − 1 . This search can expand the reach of T , and demonstrates that the LHC can probe low-mass, MeV-scale particles.more » « less
-
Calculations of the elastic I=3/2 nucleon-pion scattering phase shifts on two lattice QCD ensembles with mπ=200MeV and 280MeV are presented. The ensembles both employ Nf=2+1 Wilson clover fermions. We determine the Δ(1232) resonance parameters from a finite volume scattering analysis. In one study the single partial wave simplification is employed to compute the p-wave amplitude while in the other we treat the partial wave mixing between s- and p-wave contributions. Fitting our data to a Breit-Wigner resonance model we find mΔ/mπ=7.13(9) and 4.75(5) on the two ensembles respectively, showing that for a lighter quark mass the resonance mass moves from near the Nπ threshold to near the Nππ threshold, in agreement with experiment.more » « less
-
A bstract We study two- and three-meson systems composed either of pions or kaons at maximal isospin using Monte Carlo simulations of lattice QCD. Utilizing the stochastic LapH method, we are able to determine hundreds of two- and three-particle energy levels, in nine different momentum frames, with high precision. We fit these levels using the relativistic finite-volume formalism based on a generic effective field theory in order to determine the parameters of the two- and three-particle K-matrices. We find that the statistical precision of our spectra is sufficient to probe not only the dominant s -wave interactions, but also those in d waves. In particular, we determine for the first time a term in the three-particle K-matrix that contains two-particle d waves. We use three N f = 2 + 1 CLS ensembles with pion masses of 200, 280, and 340 MeV. This allows us to study the chiral dependence of the scattering observables, and compare to the expectations of chiral perturbation theory.more » « less