skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Streamflow Depletion Caused by Groundwater Pumping: Fundamental Research Priorities for Management‐Relevant Science
Abstract Reductions in streamflow caused by groundwater pumping, known as “streamflow depletion,” link the hydrologic process of stream‐aquifer interactions to human modifications of the water cycle. Isolating the impacts of groundwater pumping on streamflow is challenging because other climate and human activities concurrently impact streamflow, making it difficult to separate individual drivers of hydrologic change. In addition, there can be lags between when pumping occurs and when streamflow is affected. However, accurate quantification of streamflow depletion is critical to integrated groundwater and surface water management decision making. Here, we highlight research priorities to help advance fundamental hydrologic science and better serve the decision‐making process. Key priorities include (a) linking streamflow depletion to decision‐relevant outcomes such as ecosystem function and water users to align with partner needs; (b) enhancing partner trust and applicability of streamflow depletion methods through benchmarking and coupled model development; and (c) improving links between streamflow depletion quantification and decision‐making processes. Catalyzing research efforts around the common goal of enhancing our streamflow depletion decision‐support capabilities will require disciplinary advances within the water science community and a commitment to transdisciplinary collaboration with diverse water‐connected disciplines, professions, governments, organizations, and communities.  more » « less
Award ID(s):
1856084
PAR ID:
10505364
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Water Resources Research
Volume:
60
Issue:
5
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Groundwater depletion threatens global freshwater resources, necessitating urgent water management and policies to meet current and future needs. However, existing data-intensive approaches to assessments do not fully account for the complex human, climate, and water interactions within transboundary groundwater systems. Here, we present the design of and findings from a pilot participatory modeling workshop aiming to advance understanding of the hydrologic–human–climate feedback loops underpinning groundwater systems. Using participatory modeling tools and methods from the system dynamics tradition, we captured the mental models of researchers from water, social, data, and systems sciences. A total of 54 feedback loops were identified, demonstrating the potential of this methodology to adequately capture the complexity of groundwater systems. Based on the workshop outcomes, as an illustrative example, we discuss the value of participatory system modeling as a conceptualization tool, bridging perspectives across disciplinary silos. We further discuss how outcomes may inform future research on existing knowledge gaps around groundwater issues, and in doing so, advance interdisciplinary, use-inspired research for water decision-making more broadly. 
    more » « less
  2. Climate change is increasingly impacting water availability. National-scale hydrologic models simulate streamflow resulting from many important processes, but often without processes such as human water use and management activities. This work explores and tests methods to account for such omitted processes using one national-scale hydrologic model. Two bias correction methods, Flow Duration Curve (FDC) and Auto-Regressive Integrated Moving Average (ARIMA), are tested on streamflow simulated by the US Geological Survey National Hydrologic Model (NHM-PRMS), which omits irrigation pumping. A semi-arid agricultural case study is used. FDC and ARIMA perform better for correcting low and high flows, respectively. A hybrid method performs well at both low and high flows; typical Nash-Sutcliffe values increased from <-1.00 to about 0.75. Results suggest methods with which national-scale hydrologic models can be bias-corrected for omitted processes to improve regional streamflow estimates. Utility of these correction methods in simulation of future projections is discussed. 
    more » « less
  3. Abstract The production of food, electricity, and treated water is often tracked and managed along political or infrastructure boundaries. Yet, water resources, a critical input in the production of these goods, are delineated along natural landscape features (i.e., watersheds). The boundary mismatch between water resources and the associated production of economic goods conceals hydrologic dependencies and vulnerabilities in the provisioning of Food‐Energy‐Water (FEW) resources. In this study, we pair economic, infrastructure, and hydrologic data to evaluate the production of food, electricity, and treated water within watersheds of the conterminous United States. The US FEW sectors produced 950 million tonnes of crops, 3,973 million MWh of electricity, and supplied water to 263 million people in 2017. FEW production consumed 128 km3of blue water (18%) and 583 km3of green water (82%). Watersheds in central and southern California, the Midwest, and the Southwest have the largest FEW blue water consumption and the greatest exposure to water stress. Nearly three‐fifths of FEW production occurs in regularly water‐stressed watersheds. FEW production in watersheds in the Great Plains and Midwest relies heavily on groundwater to buffer against intra‐ and inter‐annual streamflow variability, while surface reservoir storage buffers against water shortages in all watersheds. We show where FEW production may be susceptible to curtailments due to ongoing groundwater depletion or known infrastructure deficiencies. This study adds to our understanding of how a nation's water resources and associated infrastructure support economic activity, as well as areas where economic activity is exposed to hydrological and infrastructure risks. 
    more » « less
  4. Abstract Groundwater discharge generates streamflow and influences stream thermal regimes. However, the water quality and thermal buffering capacity of groundwater depends on the aquifer source-depth. Here, we pair multi-year air and stream temperature signals to categorize 1729 sites across the continental United States as having major dam influence, shallow or deep groundwater signatures, or lack of pronounced groundwater (atmospheric) signatures. Approximately 40% of non-dam stream sites have substantial groundwater contributions as indicated by characteristic paired air and stream temperature signal metrics. Streams with shallow groundwater signatures account for half of all groundwater signature sites and show reduced baseflow and a higher proportion of warming trends compared to sites with deep groundwater signatures. These findings align with theory that shallow groundwater is more vulnerable to temperature increase and depletion. Streams with atmospheric signatures tend to drain watersheds with low slope and greater human disturbance, indicating reduced stream-groundwater connectivity in populated valley settings. 
    more » « less
  5. This dataset consists of groundwater levels measured within wells distributed across Watershed 3 at Hubbard Brook Experimental Forest from 2007-2020. Water levels are expressed as a depth (cm) from the soil surface. This dataset is a part of a larger project aimed at explaining the spatial and temporal variation in stream water chemistry at the headwater catchment scale using a framework based on the combined study of hydrology and soil development – hydropedology. The project will demonstrate how hydrology strongly influences soil development and soil chemistry, and in turn, controls stream water quality in headwater catchments. Understanding the linkages between hydrology and soil development can provide valuable information for managing forests and stream water quality. Feedbacks between soils and hydrology that lead to predictable landscape patterns of soil chemistry have implications for understanding spatial gradients in site productivity and suitability for species with differing habitat requirements or chemical sensitivity. Tools are needed that identify and predict these gradients that can ultimately provide guidance for land management and silvicultural decision making. Better integration between soil science, hydrology, and biogeochemistry will provide the conceptual leap needed by the hydrologic community to be able to better predict and explain temporal and spatial variability of stream water quality and understand water sources contributing to streamflow. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less